Übungsblatt No. 2: Wiederholung Elektrodynamik

Ausgehändigt: 31.10.2016 Abgabe: 07.11.2016

Für dieses Übungsblatt sei die Raumzeit flach und die Metrik gegben durch die Minkowski-Metrik $\eta_{\mu\nu} = \text{diag}(-1, 1, 1, 1)$.

Aufgabe 1: Potential, Feldstärke, Eichung (2 Punkte)

Das magnetische Vektorpotential A_i kann zu einem 4-Potential A_μ erweitert werden, indem man $A_0=-\phi$ setzt, wobei ϕ das elektrische Potential ist. Der antisymmetrische Feldstärketensor ist definiert durch

$$F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}. \tag{1}$$

a) Zeige, dass der Feldstärketensor $F_{\mu\nu}$ invariant ist unter einer Eichtransformation

$$A_{\mu} \to A_{\mu} + \partial_{\mu} \epsilon,$$
 (2)

wobei ϵ eine beliebige Funktion von Raum und Zeit ist.

b) Drücke die Komponentenmatrix des Feldstärketensors explizit durch die Komponenten des elektrischen Feldes $\vec{E} = -\mathrm{grad}\phi - \partial_0 \vec{A}$ und des magnetischen Felds $\vec{B} = \mathrm{rot} \vec{A}$ aus.

Aufgabe 2: Die Wirkung (3 Punkte)

a) Berechne die Feldgleichungen für A_{μ} durch Variation von A_{μ} in der Wirkung

$$S_{ED} = \int d^4x \left[-\frac{1}{16\pi} F_{\mu\nu} F^{\mu\nu} + j^{\mu} A_{\mu} \right], \tag{3}$$

d.h. $\delta S_{ED}=0$. (Vernachlässige Oberflächenterme und nimm an, dass j^{μ} nicht variiert werden muss.)

b) Wir fügen einen Eichfixierungsterm zur Wirkung hinzu,

$$S_{EF} = -\frac{1}{8\pi} \int d^4x \; (\partial_\mu A^\mu)^2.$$
 (4)

Berechne jetzt die Feldgleichungen für A_{μ} ausgehend von $\delta S_{ED} + \delta S_{EF} = 0$. Nenne die Eichung, in der die Feldgleichungen nun gegeben sind.

c) Untersuche, welche der Wirkungen S_{ED} und S_{EF} invariant unter der Eichtransformation in Gl. 2 ist. Nimm an, dass $\partial_{\mu}j^{\mu}=0$ ist (und dass Oberflächenterme vernachlässigt werden können).