
Exercises – Gravitational Waves
Jürgen Ehlers Spring School 2018

Bonus exercises can/should be skipped first. Solutions will be provided at:
http://jan-steinhoff.de/lectures/jess2018/

1 Quadrupole Formula

1.1 Estimates

The gravitational wave luminosity is approximately given by the celebrated quadrupole
formula

L =
1

5
〈
...
Qij

...
Q
ij〉. (1)

A crude dimensional analysis leads to the estimate

L ∼ G

5c5
× (part of the mass that moves)2 × (size of the system)4

(time for mass to move through the system)6
, (2)

where we have restored the factors of G and c. It holds
G

c5
≈ 10−53 W−1 (3)

(One Watt is W = kg m2/s3.)
Estimate the gravitational-wave luminosity of:

1. Someone waving his fist. How long does it take to produce a single graviton?

2. A 5×105 kg steel rod of 20 m length rotating at 5 Hz. (It’s close to breaking apart!)

3. The Earth moving around the Sun. Compare this power to things in everyday life.

4. Two black holes, of 30M� each, close to their innermost stable orbit (separation
∼ 6×total mass). Give this result in units ofM�c

2/s. Estimate the (dimensionless)
strain h at a distance R of one astronomical unit and 10 million lightyears (size of
our local group of galaxies) using h ∼ G/c4 × 2Q̈/R.

Compare the estimates for the case of the Earth and the binary black hole with eq. (5).

1.2 Binary System on a Circular Orbit (bonus)

Using Qij = M ij − 1
3
Mk

kδ
ij and the formulas from the lecture for a circular binary

M11 = µr2 cos2 ωt, M22 = µr2 sin2 ωt, M12 = M21 = µr2 cosωt sinωt, (4)

all other zero, calculate the gravitational-wave luminosity (1). The average 〈. . . 〉 is taken
over one orbit. You should find L = 1

10
µ2r4(2ω)6. Use Kepler’s third law r3ω2 = M to

arrive at

L =
32

5
(Mc ω)10/3, (5)

with the “chirp” mass Mc = µ3/5M2/5.
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2 Linear Approximation

In the linear approximation, the metric is written as gµν = ηµν + hµν , with the flat
Minkowski metric ηµν = diag(−1, 1, 1, 1). It is assumed that the components of hµν are
small and that O(h2) terms can be neglected. Indices can be pulled using ηµν .

2.1 Wave Equation (bonus)

The Christoffel symbols and the curvature tensor are defined as

Γµαβ =
1

2
gµν(∂αgβν + ∂βgαν − ∂νgαβ), (6)

Rµ
ναβ = ∂αΓµνβ − ∂βΓµνα + ΓρνβΓµρα − ΓρναΓµρβ. (7)

Show that

2Γµαβ = ηµν(∂αhβν + ∂βhαν − ∂νhαβ) +O(h2), (8)

2Rµναβ = ∂ν∂αhµβ + ∂µ∂βhνα − ∂µ∂αhνβ − ∂ν∂βhµα +O(h2). (9)

Show that the Einstein equations Rµν− 1
2
gµνR = 8πTµν in the linear approximation read

�h̄µν − ∂α∂µh̄να − ∂α∂ν h̄µα + ηµν∂
α∂βh̄αβ +O(h2) = −16πTµν . (10)

Here we use h̄µν = hµν − 1
2
ηµνh

α
α. Note that h̄αα = −hαα, i.e., the “bar operation” flips

the sign of the trace (it is a trace-reversal operation). Hence hµν = h̄µν − 1
2
ηµν h̄

α
α.

2.2 Gauge Transformations

In general relativity, a gauge transformation between coordinates xµ and x′µ changes a
tensor like the metric gµν as

g′µν(x
′) = gαβ(x)

∂xα

∂x′µ
∂xβ

∂x′ν
. (11)

For a small gauge transformation xµ = x′µ + ξµ(x′) with ξµ = O(h), confirm that

h′µν = hµν + ∂µξν + ∂νξµ +O(h2), (12)

h̄′µν = h̄µν + ∂µξν + ∂νξµ − ηµν∂αξα +O(h2). (13)

(Does it matter if derivatives are taken with respect to x or x′ here?)
Show that the Riemann tensor (9) is invariant under such a transformation, i.e.

R′µναβ = Rµναβ +O(h2). (14)

Finally, start from an h̄µν in some gauge, where fµ := ∂ν h̄µν is a generic function, and
argue that one can find a ξµ such that ∂ν h̄′µν = 0. This is the harmonic gauge introduced
in the lectures.
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3 Plane Waves

3.1 Transverse-Traceless Gauge

1. We consider the homogeneous wave equation in the linear approximation and in
harmonic gauge

�h̄µν = 0, ∂ν h̄µν = 0. (15)

Check that monochromatic plane waves are a solution,

h̄µν = aµνe
ikαxα + (c.c.), (16)

with the amplitude aµν = aνµ = const and the frequency ω = k0 = −k0, if the
dispersion relation kαk

α = 0 holds (or ω2 = kik
i) and if kνaµν = 0.

2. A residual gauge freedom is left for plane waves. Show that if �ξµ = 0, then the
gauge-transformed field [cf. eq. (13)]

hTT
µν = h̄µν + ∂µξν + ∂νξµ − ηµν∂αξα (17)

still fulfills �hTT
µν = 0 and ∂νhTT

µν = 0. We can then write

hTT
µν = aTT

µν e
ikαxα + (c.c.), ξµ =

1

iω
bµe

ikαxα + (c.c.). (18)

Confirm that it holds

aTT
µν = aµν + nµbν + nνbµ − ηµνnαbα, (19)

nνaTT
µν = 0. (20)

where we defined nµ = kµ/ω. Check that nini = 1 and n0 = −1.

3. Let us try to impose the conditions aTTµ
µ = 0 = aTT

0i . Argue that these conditions
can be met for some choice of bµ. (You do not need to solve for bµ explicitly.) Then
show that also aTT

00 = 0 = aTT
ij n

j. This is the transverse-traceless (TT) gauge,

hTTµ
µ = 0, hTT

0i = 0, hTT
00 = 0, hTT

ij n
j = 0. (21)

4. Argue that the relation between the nonzero components of hTT
µν and h̄µν must be

hTT
ij = Λij

klh̄kl, Λij
kl =

1

2
(Λi

kΛj
l + Λi

lΛj
k − ΛijΛ

kl), (22)

where Λik = δik − nink. Here we have encountered the TT-projector Λij
kl.

Alternatively, but lengthy (bonus): Explicitly solve for bµ and show that eq. (19)
leads to eq. (22). Hint: From nνaµν = 0 it follows that aµ0 = −aµjnj and aµµ =
Λijaij. You should find

b0 = −1

2
a0jn

j +
1

4
aµµ =

1

2
akln

knl +
1

4
Λklakl, (23)

bi = a0i −
1

2
a0jn

jni +
1

4
nia

µ
µ = −aijnj +

1

2
akjn

knjni +
1

4
niΛ

klakl. (24)

Note: Most of the above is only valid for nonstatic solutions ω 6= 0 (“proper waves”).
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3.2 Geodesic Deviation

We consider a free falling observer in the field of a monochromatic plane gravitational
wave in the linear approximation. We adopt coordinates spanning the local “laboratory”
frame of the observer, i.e., the coordinates (approximately) coincide with times and
length measured by the free falling observer. This means that close to the observer
gµν ≈ ηµν and Γαµν ≈ 0, but the curvature tensor can in general not be neglected.
(Which physical principle is linked to the existence of these coordinates?)

Show that the equation of geodesic deviation

D2rµ

Dτ 2
= Rµ

αβνu
αuβrν , (25)

simplifies to
d2ri
dt2
≈ 1

2
rj
∂2hTT

ji

∂t2
, (26)

for two geodesics initially at rest in the local laboratory system, where rµ is their sepa-
ration vector. Make use of eq. (14). Hint: It holds r0 = 0.

Interpret the right hand side of eq. (26) as a field of force. Roughly sketch the field
lines for both plus and cross polarizations. Hint: It could be helpful to compute the
divergence of the force field. At this point, it makes sense to review the discussion of
the ring of test-masses given in the lecture.

Finally, evaluate eq. (25) in the transverse-traceless gauge/coordinate system. What
is going on here? Hints: It holds (uµ) = (1, 0, 0, 0) +O(h) and dri/dτ = O(h). Why?
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