Exercises — Gravitational Waves
Jirgen Ehlers Spring School 2019

Solutions will be provided at: http://jan-steinhoff.de/lectures/jess2019/

1 Quadrupole Formula Estimates

The gravitational wave luminosity is approximately given by the celebrated quadrupole

formula . B
L = 5<QU 9y, (1)

A crude dimensional analysis leads to the estimate
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where we have restored the factors of G and ¢. It holds
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(One Watt is W = kgm?/s3.)

Estimate the gravitational-wave luminosity of:

1. Someone waving his fist. How long does it take to produce a single graviton?

2. A 5x10° kg steel rod of 20 m length rotating at 5 Hz. (It’s close to breaking apart!)
3. The Earth moving around the Sun. Compare this power to things in everyday life.

4. Two black holes, of 30M, each, close to their innermost stable orbit (separation
~ 6xtotal mass). Give this result in units of M c?/s. Estimate the (dimensionless)
strain h at a distance R of one astronomical unit and 10 million lightyears (size of
our local group of galaxies) using h ~ G/c* x 2Q/R.


http://jan-steinhoff.de/lectures/jess2019/

2 Geodesic Deviation

We consider a free falling observer in the field of a monochromatic plane gravitational
wave in the linear approximation. We adopt coordinates spanning the local “laboratory”
frame of the observer, i.e., the coordinates (approximately) coincide with times and
length measured by the free falling observer. This means that close to the observer
9w ~ Nw and 'Y, =~ 0, but the curvature tensor can in general not be neglected.
(Which physical principle is linked to the existence of these coordinates?)

Show that the equation of geodesic deviation
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5z = Rlaguu”
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simplifies to -

2

drimlr]’a hji ’ (5)

dt? 2 ot?
for two geodesics initially at rest in the local laboratory system, where r#* is their sep-
aration vector. Make use of the fact that the Riemann tensor R*,g, is invariant under
coordinate transformation in the linear approximation [see eq. (14) below] and can be
evaluated in TT-gauge. Hint: It holds r° = 0, hg,” = 0, and eq. (9) below.

Interpret the right hand side of eq. (5) as a field of force. Roughly sketch the field
lines for both plus and cross polarizations. Hint: It could be helpful to compute the
divergence of the force field. At this point, it makes sense to review the discussion of
the ring of test-masses given in the lecture.

Finally, evaluate eq. (4) in the transverse-traceless gauge/coordinate system. What is
going on here? Hints: It holds (u*) = (1,0,0,0) + O(h) and dr'/dr = O(h). Why?




Bonus Exercises

3 Linear Approximation

In the linear approximation, the metric is written as g,, = 7 + hy,, with the flat
Minkowski metric 7, = diag(—1,1,1,1). It is assumed that the components of h,, are
small and that O(h?) terms can be neglected. Indices can be pulled using 7,,,.

3.1 Wave Equation

The Christoffel symbols and the curvature tensor are defined as

Map = %9’“’(%9@ + 939ar — Ovap); (6)
RFyap = 0aI g — 01" o + T, 51" pos — TP LT 5. (7)
Show that
20" o5 = " (Oahgy + Oshaw — Oyhag) + O(h?), (8)
2R, = 0,00hus + 005N — 0,0uhus — 0,05h,ua + O(h?). 9)

Show that the Einstein equations R, — % 9w = 87T}, in the linear approximation read

Ohp — 0“0uhye — 0“0yhpa + 1w 0%0°hap + O(R?) = —167T,,. (10)

Here we use BW =y — %nw,ho‘a. Note that h%, = —h%,, i.e., the “l_aar operati_on” flips
the sign of the trace (it is a trace-reversal operation). Hence h, = h,, — %T)Who‘a.

3.2 Gauge Transformations

In general relativity, a gauge transformation between coordinates z* and x’* changes a
tensor like the metric g, as

P 0z* 0z
g/u/<x ) = gaﬁ(m) axm ax,y : (11)
For a small gauge transformation z# = a/* + £#(2’) with £* = O(h), confirm that
My = Py + 0 + 06 + O(H), (12)
h‘/uy - h/ux + a,ué.y + aug,u - nuuaaga + O(hQ) (13)

(Does it matter if derivatives are taken with respect to « or 2" here?)
Show that the Riemann tensor (9) is invariant under such a transformation, i.e.
:11/04,8 = R,uz/aﬁ + O(hQ) (14)
Finally, start from an fLW in some gauge, where f, := 9" h,, is a generic function, and
argue that one can find a §, such that 9”hj,, = 0. This is the harmonic gauge introduced
in the lectures.



4 Transverse-Traceless Gauge

1. We consider the homogeneous wave equation in the linear approximation and in
harmonic gauge

Ohy, =0,  9”hy, = 0. (15)
Check that monochromatic plane waves are a solution,

B = a,,e®™ 4 (c.c.), (16)
with the amplitude a,, = a,, = const and the frequency w = k° = —k, if the

dispersion relation k,k* = 0 holds (or w? = k;k") and if k”a,, = 0.

2. A residual gauge freedom is left for plane waves. Show that if [J§, = 0, then the
gauge-transformed field [cf. eq. (13)]

hEzzT = B#V + augzx + aug,u - nuyaaga (17)

still fulfills Ok, = 0 and 9”h;,) = 0. We can then write
hTT — 4, TT jikqz® c. =} tkax™ ). 18
ur = Gy € + (c.c.), &, —bue + (c.c.) (18)

Confirm that it holds

CLTT == CLMV + nuby + nybu - nuunabaa (19)

uv
v TT
n‘a,, =0. (20)
where we defined n,, = k,/w. Check that n'n; = 1 and ny = —1.
3. Let us try to impose the conditions aj;"* = 0 = ag;". Argue that these conditions
can be met for some choice of b,. (You do not need to solve for b, explicitly.) Then
show that also agy’ = 0 = a;;"n?. This is the transverse-traceless (TT) gauge,

™ =0, hg' =0, hy =0, k' =o0. (21)

4. Argue that the relation between the nonzero components of h;f;r and fLW must be
- 1
hit =AM, AT = 5(/\/%/ + ASAGF — A AT, (22)
where Ay, = d;, — niny. Here we have encountered the TT-projector A;;*.

Alternatively, but lengthy (optional): Explicitly solve for b, and show that

eq. (19) leads to eq. (22). Hint: From n”a,, = 0 it follows that a,0 = —a,;n’
and a*, = AYa;;. You should find
1 i 1 k, L 1Akl
by = —500m + 1% = Jounn + TR (23)
_ 1 j L _ i1 k, j 1 A
bi = ag; — §aojn n; + Znia m = —Q;;n + §akjn n’'n; + an ag- (24)

Note: Most of the above is only valid for nonstatic solutions w # 0 (“proper waves”).
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