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1. Literature

Effective Field Theory (EFT) program to classical gravitational dynamics and radiation
was initiated in references [1, 2], for a review of the literature see references [3–5]. The
first post-Newtonian (1PN) Lagrangian was first derived in reference [1] using the EFT
approach, here we follow reference [6]. A Mathematica code was published in reference
[7].

The lecture notes can be found at http://jan-steinhoff.de/lectures/tgwg2018/.
We use units with G = 1 = c and the signature of spacetime is mostly minus.

TODO: V i to Ai, normalization! insert notes.
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2. Review of path integrals

The aim of this section is to recall some basics about path integrals and how they connect
to Feynman rules. A more detailed, didactic treatment can be found in many quantum
field theory textbooks. However, one could skip this topic/section and directly try to
convert the diagrams in the exercise section 5 into integrals using the Feynman rules,
which gives one a taste of how the machinery works.

In what follows, we recall the path integral method for a single scalar field ϕ. The
effective action Seff can be obtained by integrating out ϕ from the full action S, as in

const · e
i
h̄
Seff =

∫
Dϕ e

i
h̄
S. (1)

Let us focus on terms in S quadratic in the fields, which lead to the propagators. A term
−C

2
ϕ∆ϕ in the action leads to a propagator normalized as C−1∆−1 due to the formula

for Gaussian integrals applied to the generating functional of the free field Z0, e.g.

Z0[J ] =

∫
Dϕ e

∫
d4x[−C2 ϕ∆ϕ+Jϕ] = Z0[0]e

∫
d4x 1

2C
J∆−1J , (2)

〈ϕ(x1)ϕ(x2)〉 =
1

Z0[0]

∫
Dϕϕ(x1)ϕ(x2)e

∫
d4x[−C2 ϕ∆ϕ], (3)

=
1

Z0[0]

δ2Z[J ]

δJ(x2)δJ(x1)

∣∣∣∣
J=0

, (4)

=
1

C
∆−1δ(x1 − x2). (5)

In QFT it is customary to include a factor h̄
i

in the propagator coming from the exponent
i
h̄
S in the path integral, which we drop here since all of these factors cancel in the classical

limit.
All terms in the action (except the propagator ones) are represented by vertices. Let

us recall how this works for a ϕ4 interaction. The path integral then reads∫
Dϕ e

∫
d4x[−C2 ϕ∆ϕ+ λ

4!
ϕ4] =

∫
Dϕ e

∫
d4x[−C2 ϕ∆ϕ]

∑
n

1

n!

[∫
d4x

λ

4!
ϕ4

]n
, (6)

=
∑
n

1

n!

[∫
d4x

λ

4!

δ4

δJ4

]n
Z0[J ]

∣∣∣∣
J=0

. (7)

The contributions to this sum are visualized by Feynman diagrams, where λ
4!
ϕ4 or λ

4!
δ4

δJ4

is represented by a vertex with 4 lines, and each propagator generated by a pair of
derivatives acting on Z[J ] is represented by a line connecting the vertices; nonzero
contributions must have all lines emanating from the vertices connected due to setting
J = 0 in the end. The overall constant factor Z[0] is irrelevant. The factors 1/4! and
1/n! usually cancel for combinatorial reasons, e.g., there are 4! different ways to connect
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4 distinct lines to a vertex. This is not true when the diagram has symmetries, leading
to the notion of the symmetry factor (formally, the size of the automorphism group of
the diagram). In the end, the definition of the effective action (1) reads

eSeff =
∑
n

1

n!

[∫
d4x

λ

4!

δ4

δJ4

]n
e
∫
d4x 1

2C
J∆−1J

∣∣∣∣
J=0

, (8)

where the irrelevant constant Z0[0] was dropped. One can directly compute Seff by only
summing connected diagrams, i.e. diagrams where all vertices can be reached by walking
along the propagator lines. This can be shown noticing that the sum of all diagrams
(equal to eSeff) can be written in terms of all connected diagrams C(i) as

∏
i e
C(i) = e

∑
i C(i).

3. Feynman rules

Now, the aim is to calculate the classical part of the effective action Seff of a binary to
1PN order using a path integral

const · e
i
h̄
Seff =

∫
Dg e

i
h̄
S, (9)

where S is the complete action with two point masses, Einstein-Hilbert, and gauge
fixing terms. (Ghost fields are only need for quantum corrections.) Since we focus on
the conservative part, we can ignore the (dissipative) radiation modes, so the metric
only contains orbital scale modes (the body-scale modes were integrated out already at
this stage). The path integral is evaluated perturbatively using Feynman diagrams, as
explained in the last section. We use the Kaluza-Klein ansatz for the metric [6]

ds2 = gµνdx
µdxν , (10)

= −e−2V (dt+ 4Vidx
i)2 + e2V (δij + σij)dx

idxj. (11)

3.1. Propagators

The leading order quadratic terms in the action

S(2) =
1

8π

∫
d4x[V∆V − 4Vi∆Vi], (12)

lead to the propagators (σij is not needed at 1PN)

= 〈V (x1, t1)V (x2, t2)〉, (13)

= −4π∆−1δ(x1 − x2)δ(t1 − t2), (14)

= 4π

∫
d3k

(2π)3

eik·(x1−x2)

k2
δ(t1 − t2), (15)

= 〈Vi(x1, t1)Vj(x2, t2)〉, (16)

= −πδijδ(t1 − t2)

∫
d3k

(2π)3

eik·(x1−x2)

k2
. (17)

Quadratic terms involving times derivatives are treated perturbatively, i.e., as vertices.
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3.2. Field Vertices

We identify the field vertices directly by the corresponding term in the action

=
1

2!

1

4π

∫
d4x ∂0V ∂0V, (18)

Notice that the usual procedure is to drop the factors 1/i! for i identical lines on a vertex
and multiply the diagram by 1/(symmetry factor) instead. In QFT, it is customary to
present the vertex rules with the 1/i! already dropped.

3.3. Worldline vertices

The worldline couplings are to 1PN order

= m

∫
dt V (x(t), t)

[
1 +

3

2
v2

]
, (19)

= −4m

∫
dt Vi(x(t), t) vi, (20)

= − 1

2!
m

∫
dt [V (x(t), t)]2, (21)

where v = ẋ = dx/dt. The worldlines are represented by thick lines, but note that there
are no propagators associated to them. The field-independent parts of the action

m

∫
dt

[
−1 +

1

2
v2 +

1

8
v4

]
, (22)

can just be taken over to Seff unchanged, one copy for each body.

4. Example: single gravito-electric exchange at 1PN

The Feynman diagrams can be translated into integrals by “pasting” in the right-hand
sides of the Feynman rules; fields are contracted using 〈. . . 〉 according to the propagator
lines. For instance, an exchange of a single “electric” graviton V between the worldlines
is given by the diagram

=

∫
dt1m1

[
1 +

3

2
v2

1(t1)

] ∫
dt2m2

[
1 +

3

2
v2

2(t2)

]
〈V (x1(t1), t1)V (x2(t2), t2)〉,

≈ m1m2 4π

∫
dt1dt2

d3k

(2π)3

[
1 +

3

2
v2

1(t1) +
3

2
v2

2(t2)

]
eik·[x1(t1)−x2(t2)]

k2
δ(t1 − t2),

=

∫
dt
m1m2

r(t)

[
1 +

3

2
v2

1(t) +
3

2
v2

2(t)

]
, (23)

where r = |x1 − x2|. We have dropped terms higher than quadratic in the velocities,
since these would be 2PN. Useful integrals can be found in appendix A. Notice that the
result is the Newtonian gravitational potential, with some velocity corrections at 1PN.
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5. Exercise

To order 1PN in GR, the effective action Seff is the sum of (22) for each body, of (23),
and of the following diagrams,

, , , . (24)

Calculate these diagrams and obtain the 1PN action. (The last diagram has a symmetry
factor of 2.)

A. Integrals

A useful integral is ∫
ddk

(2π)d
eik·x

(k2)α
=

1

(4π)d/2
Γ(d/2− α)

Γ(α)

(
x2

4

)α−d/2
, (25)

explicitly for e.g. d = 3, α = 1, 2,∫
d3k

(2π)3

eik·x

k2
=

1

4π|x|
= −∆−1δ(x), (26)∫

d3k

(2π)3

eik·x

k4
= −|x|

8π
. (27)
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