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Important compact object: Neutron star

pics/neutronstar.pdf

Neutron star picture by D. Page
www.astroscu.unam.mx/neutrones/

”Lab“ for various areas in physics

magnetic field, plasma
crust (solid state)
superfluidity
superconductivity
unknown matter in core
(condensate of quarks, hyperons,

kaons, pions, . . . ?)

other important objects:
magnetars, quark stars
black holes, boson stars
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Tidal forces in binaries and resonances

tidal forces in inspiraling binaries←→ oscillation modes of neutron stars

⇒ resonances!

pics/swift.pdf

Swift/BAT, nasa.gov

resonances probably
relevant for short
gamma-ray bursts
[Tsang et.al., PRL 108 (2012) 011102]
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Einstein Telescope

pics/spectral.pdf

mode spectrum from
gravitational waves:
gravito-spectroscopy
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Tidal forces in Newtonian gravity
Simple case: linear perturbation of nonrotating barotropic stars

temperature-independent equation of state

see e.g. [Press, Teukolsky, ApJ 213 (1977) 183]

Displacement ~ξ := perturbed − unperturbed location of fluid elements

~̈ξ +D~ξ = (external forces)

D~ξ := −~∇
{[

c2
s

ρ0
+ 4πG∆−1

]
~∇ · (ρ0~ξ )

}
ρ0: unperturbed mass density cs : speed of sound G: Newton constant

Properties of operator D:
contains differential operators ~∇
and also integral operator ∆−1

linear, nonlocal
spherical symmetric
Hermitian w.r.t. compact measure dm0 := ρ0d3x
[Chandrasekhar, ApJ 139 (1964) 664–674]
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Normal modes (NM) in Newtonian gravity

Eigenfunctions of D are the normal oscillation modes of the star

D is Hermitian, compact integration measure dm0 := ρ0d3x

⇒ Discrete, real eigenvalues or oscillation frequencies ωn`

Eigenvalue equation:
D~ξ NM

n`m = ω2
n`
~ξ NM

n`m

Orthonormalization: ∫
dm0 ~ξ

NM †
n′`′m

~ξ NM
n`m = δn′nδ`′`δm′m

Indices {`, m} from spherical harmonics

Decomposition in terms of mode amplitudes An`m(t)

~ξ =
∑
n`m

An`m(t)~ξ NM
n`m(~x)
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Amplitude formulation
Displacement field ~ξ specified by

~̈ξ +D~ξ = (external forces)

= −~∇Φext

Insert mode decomposition

~ξ =
∑
n`m

An`m(t)~ξ NM
n`m(~x)

where D~ξ NM
n`m = ω2

n`
~ξ NM

n`m

and project onto orthonormal basis ~ξ NM
n`m

Result: uncoupled forced harmonic oscillators

Än`m + ω2
n`An`m = fn`m

fn`m := −
∫

dm0 ~ξ
NM

n`m · ~∇Φext
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Än`m + ω2
n`An`m = fn`m

fn`m := −
∫

dm0 ~ξ
NM

n`m · ~∇Φext

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST) Tidal forces and mode resonances Aveiro, October 9th, 2013 6 / 17



Overlap integrals

Än`m + ω2
n`An`m = fn`m

fn`m := −
∫

dm0 ~ξ
NM

n`m · ~∇Φext

Radial/angular split of integral (spherical harmonics)

In` ∼ radial integration part of fn`m
overlap integral

fn`m ∝ In` × (`-pole of Φext)

Overlap integrals In`
Coupling constants between modes to external field
Determine energy exchange between orbital motion and modes
Together with frequencies ωn` they define the gravito-spectrum
(measurable through gravitational waves)
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Different perspective on the Newtonian theory
Chakrabarti, Delsate, Steinhoff, arXiv:1306.5820

Example: quadrupolar sector ` = 2

linear response
F−→

external quadrupolar field −→ deformation −→ quadrupolar response

0.00 0.05 0.10 0.15 0.20 0.25
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5

quadrupolar
response:

F =
∑

n

I2
n`

ω2
n` − ω2

ωn`: mode frequency
In`: overlap integral
R: radius

poles⇒ resonances!

pics/resonance.pdf

Tacoma Bridge
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Analogy with electronics

Q
U

=
1

iω Z

=
∑

n

1
Ln

1
CnLn
− ω2

0.00 0.05 0.10 0.15 0.20 0.25
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Q
E

=: F

=
∑

n

I2
n`

ω2
n` − ω2

Q: quadrupole
E : external tidal field
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Philosophy of the approach

Starting point: single object, e.g., neutron star

Idea
Multipoles describe compact object on macroscopic scale

←→

state variables (p, V , T ) ←→ multipoles (M, S, Q)
equations of state ←→ effective action
correlation ←→ response

Approximations for binary system using effective theory:
Effective point-particle action with dynamical multipoles
Response functions (propagators) for multipoles

⇒ Predictions: gravitational waves, gamma-ray bursts, pulsar timing
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Intermediate conclusion

Newtonian theory in terms of effective action and response functions:
Alternative computation of overlap integral through fit of F
Immediately generalizes to more complicated situations
Can be generalized to the relativistic case
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Relativistic tidal interactions
Status: expansion around adiabatic case

F (ω) = 2µ2 + iωλ+ 2ω2µ′2 +O(ω3)

µ2: 2nd kind relativistic Love number [Hinderer, ApJ 677 (2008) 1216;

Damour, Nagar, PRD 80 (2009) 084035; Binnington, Poisson, PRD 80 (2009) 084018]

λ: absorption [Goldberger, Rothstein, PRD 73 (2006) 104030]

µ′2: beyond adiabatic, not yet computed [Bini, Damour, Faye, PRD 85 (2012) 124034]

Motivation:
Adiabatic tidal effects may not be sufficient
[Maselli, Gualtieri, Pannarale, Ferrari, PRD 86 (2012) 044032]

Definition of relativistic overlap integrals
Resonances between oscillation modes and orbital motion:

Numerical simulations of binary neutron stars for eccentric orbits

[Gold, Bernuzzi, Thierfelder, Brügmann, Pretorius, PRD 86 (2012) 121501]

Shattering of neutron star crust
[Tsang, Read, Hinderer, Piro, Bondarescu, PRL 108 (2012) 011102]

Gravito-spectroscopy
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Relativistic case: generic problems

Analog to Hermitian operator D not available in the relativistic case
Substitute neutron star by point particle reproducing large-scale field

neutron star

incoming wave outgoing wave

Need to handle an inhomogeneous Regge-Wheeler equation with
effective point-particle source S representing a neutron star

d2X
dr2
∗

+

[(
1− 2M

r

)
`(`+ 1)− 6M

r
r2 + ω2

]
X = S

How to construct solutions corresponding to external field and response?
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Identification of external field and response

external quadrupolar field

Newtonian:

r `+1

adiabatic ω = 0:

r `+1
2F1(... ; 2M/r)

relativistic:

X `
MST

quadrupolar response

r−`

r−` 2F1(... ; 2M/r)

X−`−1
MST

where [Mano, Suzuki, Takasugi, PTP 96 (1996) 549]

X `
MST = e−iωr (ωr)ν

(
1− 2M

r

)−i2Mω ∞∑
n=−∞

· · · ×
[ r

2M

]n

2F1(... ; 2M/r)

Renormalized angular momentum, transcendental number: ν = ν(`, Mω)
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Identification of external field and response by
analytic continuation in `
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Relativistic response
Chakrabarti, Delsate, Steinhoff, arXiv:1304.2228

Numerical neutron star perturbation matched to
X = A1X `

MST + A2X−`−1
MST

X `
MST, X−`−1

MST related to effective point-particle source via
variation of parameters

Point-particle source requires regularization (here: Riesz-kernel)

Regularization introduces dependence on scale µ0

Fit for the response:

F (ω) ≈
∑

n

I2
n

ω2
n − ω2

Just like in Newtonian case!
Relative error less than 2%
Relativistic overlap integrals: In
Matching scale µ0 is fitted, too
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Generic program
single
object

determination of
effective action

application of
approximations

binary
system

predictions for observations

fe
ed

ba
ck
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numerical methods
(single object)exact solutions

perturbation theory

post-Minkowskian
approximation

small mass-ratio
approximation

post-Newtonian
approximation

numerical
simulations

”synergies“
e.g., EOB

gravitational waves gamma-ray burstsorbital motion,
pulsar timing
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Conclusions and outlook
Conclusions:

We defined the relativistic quadrupolar response
for linear perturbation of nonrotating barotropic stars

Response is completely analogous to Newtonian case
We defined relativistic overlap integrals
Important step towards gravito-spectroscopy using gravitational waves

Outlook:
More realistic neutron star models:

rotation, crust, . . . (also for Newtonian case)

Connection to gamma-ray bursts:
shattering of crust, instabilities of modes

Dimensional regularization
Other multipoles

based on action in [Goldberger, Ross, PRD 81 (2010) 124015]

2nd Love number of rotating black holes

Thank you for your attention
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