Tidal forces and mode resonances

in compact binaries

Savan Chakrabarti¹ Térence Delsate² Jan Steinhoff³

¹Indian Institute of Technology Guwahati. India

Mons. Belaium

³Instituto Superior Técnico Lisbon, Portugal

ISRNA

Aveiro, October 9th, 2013

Supported by **FCT** (Portugal) and **DFG** (Germany) through STE 2017 "Resonances of quasinormal modes and orbital motion in general relativistic compact binaries"

Important compact object: Neutron star

pics/neutronstar.pdf

Neutron star picture by D. Page www.astroscu.unam.mx/neutrones/

"Lab" for various areas in physics

- magnetic field, plasma
- crust (solid state)
- superfluidity
- superconductivity
- unknown matter in core (condensate of quarks, hyperons, kaons, pions, ...?)

other important objects:

- magnetars, quark stars
- black holes, boson stars

Important compact object: Neutron star

pics/neutronstar.pdf

Neutron star picture by D. Page www.astroscu.unam.mx/neutrones/

"Lab" for various areas in physics

- magnetic field, plasma
- crust (solid state)
- superfluidity
- superconductivity
- unknown matter in core (condensate of quarks, hyperons, kaons, pions, ...?)

other important objects:

- magnetars, quark stars
- black holes, boson stars

Important compact object: Neutron star

pics/neutronstar.pdf

Neutron star picture by D. Page www.astroscu.unam.mx/neutrones/

"Lab" for various areas in physics

- magnetic field, plasma
- crust (solid state)
- superfluidity
- superconductivity
- unknown matter in core (condensate of quarks, hyperons, kaons, pions, ...?)

other important objects:

- magnetars, quark stars
- black holes, boson stars

tidal forces in inspiraling binaries \longleftrightarrow oscillation modes of neutron stars

 \Rightarrow resonances!

resonances probably relevant for short gamma-ray bursts

[Tsang et.al., PRL 108 (2012) 011102]

Swift/BAT, nasa.gov

pics/double_pulsar.pdf

binary neutron stars

mode spectrum from gravitational waves: gravito-spectroscopy

tidal forces in inspiraling binaries \longleftrightarrow oscillation modes of neutron stars

 \Rightarrow resonances!

gravito-spectroscopy

tidal forces in inspiraling binaries \longleftrightarrow oscillation modes of neutron stars

 \Rightarrow resonances!

Tidal forces in Newtonian gravity

Simple case: linear perturbation of nonrotating barotropic stars temperature-independent equation of state see e.g. [Press, Teukolsky, ApJ **213** (1977) 183]

Displacement $\vec{\xi} :=$ perturbed – unperturbed location of fluid elements

$$\begin{split} \ddot{\vec{\xi}} + \mathcal{D}\vec{\xi} &= (\text{external forces}) \\ \mathcal{D}\vec{\xi} &:= -\vec{\nabla} \left\{ \left[\frac{c_s^2}{\rho_0} + 4\pi G \Delta^{-1} \right] \vec{\nabla} \cdot (\rho_0 \vec{\xi} \) \right\} \end{split}$$

 ρ_0 : unperturbed mass density

c_s: speed of sour

G: Newton constant

Properties of operator \mathcal{D} :

- contains differential operators $\vec{\nabla}$
- and also integral operator Δ^{-1}
- Iinear, nonlocal
- spherical symmetric
- Hermitian w.r.t. compact measure $dm_0 := \rho_0 d^3 x$

[Chandrasekhar, ApJ 139 (1964) 664-674]

Tidal forces in Newtonian gravity

Simple case: linear perturbation of nonrotating barotropic stars temperature-independent equation of state see e.g. [Press, Teukolsky, ApJ **213** (1977) 183]

Displacement $\vec{\xi} :=$ perturbed – unperturbed location of fluid elements

$$\begin{split} \ddot{\vec{\xi}} &+ \mathcal{D}\vec{\xi} = (\text{external forces}) \\ \mathcal{D}\vec{\xi} &:= -\vec{\nabla} \left\{ \left[\frac{\boldsymbol{c}_{s}^{2}}{\rho_{0}} + 4\pi \boldsymbol{G} \Delta^{-1} \right] \vec{\nabla} \cdot (\rho_{0}\vec{\xi}) \right\} \end{split}$$

 ρ_0 : unperturbed mass density

cs: speed of sound

G: Newton constant

Properties of operator \mathcal{D} :

- contains differential operators $\vec{\nabla}$
- and also integral operator Δ^{-1}
- linear, nonlocal
- spherical symmetric
- Hermitian w.r.t. compact measure $dm_0 := \rho_0 d^3 x$

[Chandrasekhar, ApJ 139 (1964) 664-674]

Tidal forces in Newtonian gravity

Simple case: linear perturbation of nonrotating barotropic stars temperature-independent equation of state see e.g. [Press, Teukolsky, ApJ **213** (1977) 183]

Displacement $\vec{\xi} :=$ perturbed – unperturbed location of fluid elements

$$\vec{\vec{\xi}} + \mathcal{D}\vec{\xi} = (\text{external forces})$$
$$\mathcal{D}\vec{\xi} := -\vec{\nabla} \left\{ \left[\frac{c_s^2}{\rho_0} + 4\pi G \Delta^{-1} \right] \vec{\nabla} \cdot (\rho_0 \vec{\xi}) \right\}$$

 ρ_0 : unperturbed mass density

cs: speed of sound

G: Newton constant

Properties of operator \mathcal{D} :

- contains differential operators $\vec{\nabla}$
- and also integral operator Δ⁻¹
- linear, nonlocal
- spherical symmetric
- Hermitian w.r.t. compact measure $dm_0 := \rho_0 d^3 x$

[Chandrasekhar, ApJ 139 (1964) 664-674]

Normal modes (NM) in Newtonian gravity

Eigenfunctions of ${\mathcal D}$ are the normal oscillation modes of the star

 \mathcal{D} is Hermitian, compact integration measure $dm_0 := \rho_0 d^3 x$

 \Rightarrow Discrete, real eigenvalues or oscillation frequencies $\omega_{n\ell}$

Eigenvalue equation:

$$\mathcal{D}\vec{\xi}_{n\ell m}^{\mathsf{NM}} = \omega_{n\ell}^2 \vec{\xi}_{n\ell m}^{\mathsf{NM}}$$

Orthonormalization:

$$\int dm_0 \,\vec{\xi}_{n'\ell'm}^{\rm NM\dagger} \vec{\xi}_{n\ell m}^{\rm NM} = \delta_{n'n} \delta_{\ell'\ell} \delta_{m'm}$$

Indices $\{\ell, m\}$ from spherical harmonics

Decomposition in terms of mode amplitudes $A_{n\ell m}(t)$

$$\vec{\xi} = \sum_{n\ell m} A_{n\ell m}(t) \vec{\xi}_{n\ell m}^{\text{NM}}(\vec{x})$$

Normal modes (NM) in Newtonian gravity

Eigenfunctions of \mathcal{D} are the normal oscillation modes of the star

 \mathcal{D} is Hermitian, compact integration measure $dm_0 := \rho_0 d^3 x$

 \Rightarrow Discrete, real eigenvalues or oscillation frequencies $\omega_{n\ell}$

Eigenvalue equation:

$$\mathcal{D}\vec{\xi}_{n\ell m}^{\mathsf{NM}} = \omega_{n\ell}^2 \vec{\xi}_{n\ell m}^{\mathsf{NM}}$$

Orthonormalization:

$$\int dm_0 \,\vec{\xi}_{n'\ell'm}^{\mathsf{NM}\dagger} \vec{\xi}_{n\ell m}^{\mathsf{NM}} = \delta_{n'n} \delta_{\ell'\ell} \delta_{m'm}$$

Indices $\{\ell, m\}$ from spherical harmonics

Decomposition in terms of mode amplitudes $A_{n\ell m}(t)$

$$\vec{\xi} = \sum_{n\ell m} A_{n\ell m}(t) \vec{\xi}_{n\ell m}^{\text{NM}}(\vec{x})$$

Normal modes (NM) in Newtonian gravity

Eigenfunctions of \mathcal{D} are the normal oscillation modes of the star

 \mathcal{D} is Hermitian, compact integration measure $dm_0 := \rho_0 d^3 x$

 \Rightarrow Discrete, real eigenvalues or oscillation frequencies $\omega_{n\ell}$

Eigenvalue equation:

$$\mathcal{D}\vec{\xi}_{n\ell m}^{\mathsf{NM}} = \omega_{n\ell}^2 \vec{\xi}_{n\ell m}^{\mathsf{NM}}$$

Orthonormalization:

$$\int dm_0 \,\vec{\xi}_{n'\ell'm}^{\mathrm{NM}\dagger} \vec{\xi}_{n\ell m}^{\mathrm{NM}} = \delta_{n'n} \delta_{\ell'\ell} \delta_{m'm}$$

Indices $\{\ell, m\}$ from spherical harmonics

Decomposition in terms of mode amplitudes $A_{n\ell m}(t)$

$$\vec{\xi} = \sum_{n\ell m} A_{n\ell m}(t) \vec{\xi}_{n\ell m}^{\text{NM}}(\vec{x})$$

Amplitude formulation

Displacement field $\vec{\xi}$ specified by

$$\ddot{ec{\xi}} + \mathcal{D}ec{\xi} = (\text{external forces})$$

= $-ec{
abla} \Phi_{\text{ext}}$

Insert mode decomposition

 $ec{\xi} = \sum_{n\ell m} A_{n\ell m}(t) ec{\xi}_{n\ell m}^{NM}(ec{x})$ where $\mathcal{D}ec{\xi}_{n\ell m}^{NM} = \omega_{n\ell}^2 ec{\xi}_{n\ell m}^{NM}$

and project onto orthonormal basis $\vec{\xi}_{n\ell m}^{\rm NM}$

Result: uncoupled forced harmonic oscillators

$$\ddot{A}_{n\ell m} + \omega_{n\ell}^2 A_{n\ell m} = f_{n\ell m}$$
$$f_{n\ell m} := -\int dm_0 \,\vec{\xi}_{n\ell m}^{NM} \cdot \vec{\nabla} \Phi_{\text{ext}}$$

Amplitude formulation

Displacement field $\vec{\xi}$ specified by

$$\ddot{ec{\xi}} + \mathcal{D}ec{\xi} = (ext{external forces})$$

= $-ec{
abla} \Phi_{ ext{ext}}$

Insert mode decomposition

 $ec{\xi} = \sum_{n\ell m} A_{n\ell m}(t) ec{\xi}_{n\ell m}^{NM}(ec{x})$ where $\mathcal{D}ec{\xi}_{n\ell m}^{NM} = \omega_{n\ell}^2 ec{\xi}_{n\ell m}^{NM}$

and project onto orthonormal basis $\vec{\xi}_{n\ell m}^{\rm NM}$

Result: uncoupled forced harmonic oscillators

$$\ddot{A}_{n\ell m} + \omega_{n\ell}^2 A_{n\ell m} = f_{n\ell m}$$
$$f_{n\ell m} := -\int dm_0 \, \vec{\xi}_{n\ell m}^{\mathsf{NM}} \cdot \vec{\nabla} \Phi_{\mathsf{ext}}$$

Amplitude formulation

Displacement field $\vec{\xi}$ specified by

$$\ddot{ec{\xi}} + \mathcal{D}ec{\xi} = (ext{external forces})$$

= $-ec{
abla} \Phi_{ ext{ext}}$

Insert mode decomposition

 $\vec{\xi} = \sum_{n\ell m} A_{n\ell m}(t) \vec{\xi}_{n\ell m}^{\text{NM}}(\vec{x})$ where $\mathcal{D}\vec{\xi}_{n\ell m}^{\text{NM}} = \omega_{n\ell}^2 \vec{\xi}_{n\ell m}^{\text{NM}}$

and project onto orthonormal basis $\vec{\xi}_{n\ell m}^{\rm NM}$

Result: uncoupled forced harmonic oscillators

$$\ddot{\mathbf{A}}_{n\ell m} + \omega_{n\ell}^{2} \mathbf{A}_{n\ell m} = f_{n\ell m}$$
$$f_{n\ell m} := -\int dm_{0} \,\vec{\xi}_{n\ell m}^{NM} \cdot \vec{\nabla} \Phi_{\text{ext}}$$

Overlap integrals

$$\ddot{\mathbf{A}}_{n\ell m} + \omega_{n\ell}^{2} \mathbf{A}_{n\ell m} = f_{n\ell m}$$
$$f_{n\ell m} := -\int dm_{0} \,\vec{\xi}_{n\ell m}^{NM} \cdot \vec{\nabla} \Phi_{\text{ext}}$$

Radial/angular split of integral (spherical harmonics)

 $I_{n\ell} \sim \text{radial integration part of } f_{n\ell m}$ overlap integral

 $f_{n\ell m} \propto I_{n\ell} \times (\ell$ -pole of $\Phi_{ext})$

Overlap integrals $I_{n\ell}$

- Coupling constants between modes to external field
- Determine energy exchange between orbital motion and modes
- Together with frequencies ω_{nℓ} they define the gravito-spectrum (measurable through gravitational waves)

Overlap integrals

$$\ddot{\mathbf{A}}_{n\ell m} + \omega_{n\ell}^{2} \mathbf{A}_{n\ell m} = f_{n\ell m}$$
$$f_{n\ell m} := -\int dm_{0} \,\vec{\xi}_{n\ell m}^{NM} \cdot \vec{\nabla} \Phi_{\text{ext}}$$

Radial/angular split of integral (spherical harmonics)

 $I_{n\ell} \sim \text{radial integration part of } f_{n\ell m}$ overlap integral

 $f_{n\ell m} \propto I_{n\ell} \times (\ell$ -pole of $\Phi_{ext})$

Overlap integrals Integrals Integrals

- Coupling constants between modes to external field
- Determine energy exchange between orbital motion and modes
- Together with frequencies ω_{nℓ} they define the gravito-spectrum (measurable through gravitational waves)

Different perspective on the Newtonian theory

Chakrabarti, Delsate, Steinhoff, arXiv:1306.5820

Example: quadrupolar sector $\ell = 2$

 $\omega_{n\ell}$: mode frequency $I_{n\ell}$: overlap integral R: radius

Different perspective on the Newtonian theory

Chakrabarti, Delsate, Steinhoff, arXiv:1306.5820

Example: quadrupolar sector $\ell = 2$

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Different perspective on the Newtonian theory

Chakrabarti, Delsate, Steinhoff, arXiv:1306.5820

Example: quadrupolar sector $\ell = 2$

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Analogy with electronics

$$\frac{Q}{U} = \frac{1}{i\omega Z}$$
$$= \sum_{n} \frac{\frac{1}{L_{n}}}{\frac{1}{C_{n}L_{n}} - \omega^{2}}$$

$$\frac{Q}{E} =: F$$

$$= \sum_{n} \frac{l_{n\ell}^2}{\omega_{n\ell}^2 - \omega^2} \quad Q: \text{ quadrupole}$$

$$E: \text{ external tidal field}$$

Analogy with electronics

Starting point: single object, e.g., neutron star

Idea

Multipoles describe compact object on macroscopic scale

state variables (p, V, T) \longleftrightarrow multipoles (M, S, Q)equations of state \longleftrightarrow effective actioncorrelation \longleftrightarrow response

Approximations for binary system using effective theory:

- Effective point-particle action with dynamical multipoles
- Response functions (propagators) for multipoles

 \Rightarrow Predictions: gravitational waves, gamma-ray bursts, pulsar timing

Starting point: single object, e.g., neutron star

Idea

Multipoles describe compact object on macroscopic scale

Approximations for binary system using effective theory:

- Effective point-particle action with dynamical multipoles
- Response functions (propagators) for multipoles

 \Rightarrow Predictions: gravitational waves, gamma-ray bursts, pulsar timing

Starting point: single object, e.g., neutron star

Idea

Multipoles describe compact object on macroscopic scale

state variables (p, V, T)equations of state correlation

 $\begin{array}{ccc} \longleftrightarrow & \text{multipoles } (M, S, Q) \\ \longleftrightarrow & \text{effective action} \\ \longleftrightarrow & \text{response} \end{array}$

Approximations for binary system using effective theory:

- Effective point-particle action with dynamical multipoles
- Response functions (propagators) for multipoles

 \Rightarrow Predictions: gravitational waves, gamma-ray bursts, pulsar timing

Starting point: single object, e.g., neutron star

Idea

Multipoles describe compact object on macroscopic scale

 \longleftrightarrow

state variables $(p, V, T) \leftrightarrow$ equations of state correlation

multipoles (M, S, Q)effective action response

Approximations for binary system using effective theory:

- Effective point-particle action with dynamical multipoles
- Response functions (propagators) for multipoles

 \Rightarrow Predictions: gravitational waves, gamma-ray bursts, pulsar timing Newtonian theory in terms of effective action and response functions:

- Alternative computation of overlap integral through fit of F
- Immediately generalizes to more complicated situations
- Can be generalized to the relativistic case

Relativistic tidal interactions

Status: expansion around adiabatic case

$$F(\omega) = 2\mu_2 + i\omega\lambda + 2\omega^2\mu'_2 + \mathcal{O}(\omega^3)$$

 μ₂: 2nd kind relativistic Love number [Hinderer, ApJ 677 (2008) 1216; Damour, Nagar, PRD 80 (2009) 084035; Binnington, Poisson, PRD 80 (2009) 084018]

- λ : absorption [Goldberger, Rothstein, PRD 73 (2006) 104030]
- μ₂': beyond adiabatic, not yet computed [Bini, Damour, Faye, PRD 85 (2012) 124034]

Motivation:

- Adiabatic tidal effects may not be sufficient [Maselli, Gualtieri, Pannarale, Ferrari, PRD 86 (2012) 044032]
- Definition of relativistic overlap integrals
- Resonances between oscillation modes and orbital motion:
 - Numerical simulations of binary neutron stars for eccentric orbits [Gold, Bernuzzi, Thierfelder, Brügmann, Pretorius, PRD 86 (2012) 121501]
 - Shattering of neutron star crust

[Tsang, Read, Hinderer, Piro, Bondarescu, PRL 108 (2012) 011102]

Gravito-spectroscopy

Relativistic tidal interactions

Status: expansion around adiabatic case

$$F(\omega) = 2\mu_2 + i\omega\lambda + 2\omega^2\mu'_2 + \mathcal{O}(\omega^3)$$

- μ₂: 2nd kind relativistic Love number [Hinderer, ApJ 677 (2008) 1216; Damour, Nagar, PRD 80 (2009) 084035; Binnington, Poisson, PRD 80 (2009) 084018]
- λ : absorption [Goldberger, Rothstein, PRD 73 (2006) 104030]
- μ'_2 : beyond adiabatic, not yet computed [Bini, Damour, Faye, PRD 85 (2012) 124034]

Motivation:

- Adiabatic tidal effects may not be sufficient
 [Maselli, Gualtieri, Pannarale, Ferrari, PRD 86 (2012) 044032]
- Definition of relativistic overlap integrals
- Resonances between oscillation modes and orbital motion:
 - Numerical simulations of binary neutron stars for eccentric orbits [Gold, Bernuzzi, Thierfelder, Brügmann, Pretorius, PRD 86 (2012) 121501]
 - Shattering of neutron star crust

[Tsang, Read, Hinderer, Piro, Bondarescu, PRL 108 (2012) 011102]

Gravito-spectroscopy

- Analog to Hermitian operator \mathcal{D} not available in the relativistic case
- Substitute neutron star by point particle reproducing large-scale field

• Need to handle an inhomogeneous Regge-Wheeler equation with effective point-particle source *S* representing a neutron star

$$\frac{d^2X}{dr_*^2} + \left[\left(1 - \frac{2M}{r}\right) \frac{\ell(\ell+1) - \frac{6M}{r}}{r^2} + \omega^2 \right] X = S$$

- Analog to Hermitian operator ${\cal D}$ not available in the relativistic case
- Substitute neutron star by point particle reproducing large-scale field

• Need to handle an inhomogeneous Regge-Wheeler equation with effective point-particle source *S* representing a neutron star

$$\frac{d^2X}{dr_*^2} + \left[\left(1 - \frac{2M}{r}\right) \frac{\ell(\ell+1) - \frac{6M}{r}}{r^2} + \omega^2 \right] X = S$$

- Analog to Hermitian operator ${\cal D}$ not available in the relativistic case
- Substitute neutron star by point particle reproducing large-scale field

• Need to handle an inhomogeneous Regge-Wheeler equation with effective point-particle source *S* representing a neutron star

$$\frac{d^2X}{dr_*^2} + \left[\left(1 - \frac{2M}{r}\right) \frac{\ell(\ell+1) - \frac{6M}{r}}{r^2} + \omega^2 \right] X = S$$

- Analog to Hermitian operator \mathcal{D} not available in the relativistic case
- Substitute neutron star by point particle reproducing large-scale field

• Need to handle an inhomogeneous Regge-Wheeler equation with effective point-particle source *S* representing a neutron star

$$\frac{d^2X}{dr_*^2} + \left[\left(1 - \frac{2M}{r}\right) \frac{\ell(\ell+1) - \frac{6M}{r}}{r^2} + \omega^2 \right] X = S$$

external quadrupolar field

Newtonian:

adiabatic $\omega = 0$: $r^{\ell+1} {}_2F_1(...; 2M/r)$ relativistic:

$$X_{\rm MST}^{\ell}$$

where [Mano, Suzuki, Takasugi, PTP 96 (1996) 549]

$X_{\rm MST}^{\ell} = e^{-i\omega r} (\omega r)^{\nu} \left(1 - \frac{2M}{r}\right)^{-i2M\omega} \sum_{n=-\infty}^{\infty} \cdots \times \left[\frac{r}{2M}\right]^n {}_2F_1(\dots; 2M/r)$

Renormalized angular momentum, transcendental number: $\nu = \nu(\ell, M\omega)$

quadrupolar response

$$f^{-\ell} {}_2F_1(...; 2M/r)$$

$$X_{\rm MST}^{-\ell-1}$$

external quadrupolar field

Newtonian: $r^{\ell+1}$ adiabatic $\omega = 0$: $r^{\ell+1} {}_2F_1(...; 2M/r)$

relativistic:

$$X_{\mathsf{MST}}^\ell$$

where [Mano, Suzuki, Takasugi, PTP 96 (1996) 549]

$X_{\rm MST}^{\ell} = e^{-i\omega r} (\omega r)^{\nu} \left(1 - \frac{2M}{r}\right)^{-i2M\omega} \sum_{n=-\infty}^{\infty} \cdots \times \left[\frac{r}{2M}\right]^n {}_2F_1(\dots; 2M/r)$

Renormalized angular momentum, transcendental number: $\nu = \nu(\ell, M\omega)$

quadrupolar response

 $r^{-\ell} {}_{2}F_{1}(...; 2M/r)$

 $X_{\rm MST}^{-\ell-1}$

external quadrupolar field

Newtonian:

adiabatic
$$\omega = 0$$
:
 $r^{\ell+1} {}_2F_1(...; 2M/r)$

relativistic:

$$X^{\ell}_{\mathsf{MST}}$$
 $X^{-\ell-1}_{\mathsf{MST}}$

where [Mano, Suzuki, Takasugi, PTP 96 (1996) 549]

$$X_{\rm MST}^{\ell} = e^{-i\omega r} (\omega r)^{\nu} \left(1 - \frac{2M}{r}\right)^{-i2M\omega} \sum_{n=-\infty}^{\infty} \cdots \times \left[\frac{r}{2M}\right]^n {}_2F_1(\ldots; 2M/r)$$

Renormalized angular momentum, transcendental number: $\nu = \nu(\ell, M\omega)$

quadrupolar response

external quadrupolar field

Newtonian:

 $r^{\ell+1}$ adiabatic $\omega = 0$: $r^{\ell+1} {}_2F_1(...; 2M/r)$ relativistic:

Identification of external field and response by analytic continuation in ℓ

quadrupolar response

 $r^{-\ell} {}_{2}F_{1}(...; 2M/r)$

 $X_{\rm MST}^{-\ell-1}$

Relativistic response

Chakrabarti, Delsate, Steinhoff, arXiv:1304.2228

• Numerical neutron star perturbation matched to

$$X = A_1 X_{\rm MST}^{\ell} + A_2 X_{\rm MST}^{-\ell-}$$

- X_{MST}^{ℓ} , $X_{MST}^{-\ell-1}$ related to effective point-particle source via variation of parameters
- Point-particle source requires regularization (here: Riesz-kernel)
- Regularization introduces dependence on scale μ₀
- Fit for the response:

$$F(\omega) \approx \sum_{n} \frac{l_n^2}{\omega_n^2 - \omega^2}$$

- Just like in Newtonian case!
- Relative error less than 2%
- Relativistic overlap integrals: In
- Matching scale μ_0 is fitted, too

Relativistic response

Chakrabarti, Delsate, Steinhoff, arXiv:1304.2228

Numerical neutron star perturbation matched to

$$X = A_1 X_{\mathsf{MST}}^\ell + A_2 X_{\mathsf{MST}}^{-\ell-1}$$

- X_{MST}^{ℓ} , $X_{MST}^{-\ell-1}$ related to effective point-particle source via variation of parameters
- Point-particle source requires regularization (here: Riesz-kernel)
- Regularization introduces dependence on scale μ₀
- Fit for the response:

$$F(\omega) \approx \sum_{n} \frac{I_n^2}{\omega_n^2 - \omega^2}$$

- Just like in Newtonian case!
- Relative error less than 2%
- Relativistic overlap integrals: In
- Matching scale μ_0 is fitted, too

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Tidal forces and mode resonances

Aveiro, October 9th, 2013 16 / 17

Chakrabarti, Delsate, Steinhoff (IITG/UMONS/IST)

Conclusions and outlook

Conclusions:

- We defined the relativistic quadrupolar response for linear perturbation of nonrotating barotropic stars
- Response is completely analogous to Newtonian case
- We defined relativistic overlap integrals
- Important step towards gravito-spectroscopy using gravitational waves

Outlook:

- More realistic neutron star models:
 - rotation, crust, ... (also for Newtonian case)
- Connection to gamma-ray bursts:
 - shattering of crust, instabilities of modes
- Dimensional regularization
- Other multipoles
 - based on action in [Goldberger, Ross, PRD 81 (2010) 124015]
- 2nd Love number of rotating black holes

Thank you for your attention

Conclusions and outlook

Conclusions:

- We defined the relativistic quadrupolar response for linear perturbation of nonrotating barotropic stars
- Response is completely analogous to Newtonian case
- We defined relativistic overlap integrals
- Important step towards gravito-spectroscopy using gravitational waves

Outlook:

- More realistic neutron star models:
 - rotation, crust, ... (also for Newtonian case)
- Connection to gamma-ray bursts: shattering of crust, instabilities of modes
- Dimensional regularization
- Other multipoles

based on action in [Goldberger, Ross, PRD 81 (2010) 124015]

2nd Love number of rotating black holes

Thank you for your attention

Conclusions and outlook

Conclusions:

- We defined the relativistic quadrupolar response for linear perturbation of nonrotating barotropic stars
- Response is completely analogous to Newtonian case
- We defined relativistic overlap integrals
- Important step towards gravito-spectroscopy using gravitational waves

Outlook:

- More realistic neutron star models:
 - rotation, crust, ... (also for Newtonian case)
- Connection to gamma-ray bursts: shattering of crust, instabilities of modes
- Dimensional regularization
- Other multipoles

based on action in [Goldberger, Ross, PRD 81 (2010) 124015]

2nd Love number of rotating black holes

Thank you for your attention