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Motivation for analytic study of motion in GR

Gravitational wave experiments: Advanced LIGO in 2014
(possibly >40 detections of binary NS mergers per year)

Radio astronomy: double pulsar, SKA, . . .
(also optical: WD+WD binary J0651+2844)

Formation of supermassive BH vs. gravitational recoil (”kick”)
GPB
Planetary motion

⇒ most gravity experiments require to study the motion!

Possibilities:
extreme mass ratio approximation, self-force
Full numeric simulations (still computationally very expensive)
post-Minkowskian approximation (weak field)
post-Newtonian (PN) approximation (weak field & slow motion)

⇒ when the parameter space is large, analytic methods are invaluable.
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Equations of Motion

Dpµ
dτ

= 0 −1
2

RµρβαuρSβα −1
6

Rνρβα;µJνρβα

DSµν

dτ
= 2p[µuν] +

4
3

Rαβρ[µJν]ρβα

Geodesic equation: momentum pµ
Mathisson (1937), Papapetrou (1951): spin / dipole Sµν

Dixon (∼1974): quadrupole Jµναβ , . . .
EOM for pµ and Sµν follow from theory! Tµν

;ν = 0 ; EOM

Conserved Quantities:
For a Killing vector field ξµ: Eξ = pµξµ + 1

2 Sµν∇µξν
Neglecting Jµναβ etc.: mass m :=

√−pµpµ or m := −uµpµ (SSC dep.)

spin-length S =
√

1
2 SµνSµν
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Gravitational Skeleton
in terms of delta distribution: Tulczyjew (1975); Steinhoff, Puetzfeld (2009)

√
−gTµν(xσ) =

∫
dτ
[
u(µpν)δ(4) +

(
u(µSν)αδ(4)

)
||α

+
1
3

Rαβρ(µJν)ρβαδ(4) −
2
3
(
Jµαβνδ(4)

)
||(αβ) + ...

]
uµ =

dzµ

dτ
δ(4) = δ(xσ − zσ)

Point masses only distinguished by a mass m =
√−pµpµ

Adding a dipole: Spin
Higher multipoles: Quadrupole, octupole, . . . (“finite size effects”)
Dimensional regularization required for self-gravitating objects
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Angular Velocity and Spin
in Newtonian mechanics and special relativity, e.g. Hanson, Regge (1974)

Newton special relativity

body-fixed frame x i
bf = Λijx j

rotational degrees of freedom Λki Λkj = δij ηABΛAµΛBν = ηµν

↪→ supplementary condition Λiµpµ = 0

Angular Velocity Ωij = Λki dΛkj

dt
Ωµν = ΛA

µ dΛAν

dτ

Spin (L: Lagrangian) Sij = 2
∂L
∂Ωij Sµν = 2

∂L
∂Ωµν

↪→ supplementary condition Sµνpν = 0

Remark:

Angular velocity vector is Ωi = 1
2 εijk Ωjk . Analogous for spin.
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Spin Action in GR
Westpfahl (1969); Bailey, Israel (1975); Porto (2006); Steinhoff, Schäfer (2009)

Minimal coupling:

Ωµν = ΛA
µDΛAν

dτ

L = mc
√
−uµuµ︸ ︷︷ ︸

u

+
1
2

SµνΩµν︸ ︷︷ ︸
; 1

2 Sij∂i Aj

+ ...

m ≈ mc = const
Valid to linear order in spin
Gravito-magnetic field Ai ≈ −gi0

Relevance of T 00, T i0, T ij

N mass T 00 ; gravito-electric field
1PN flow T i0 ; gravito-magnetic field (Ai )
2PN stress T ij ; 3-dim. tensor field
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Minimal coupling:

Ωµν = ΛA
µDΛAν

dτ

L = mc
√
−uµuµ︸ ︷︷ ︸

u

+
1
2

SµνΩµν︸ ︷︷ ︸
; 1

2 Sij∂i Aj

+ ...

m ≈ mc = const
Valid to linear order in spin
Gravito-magnetic field Ai ≈ −gi0

Relevance of T 00, T i0, T ij

N mass T 00 ; gravito-electric field
1PN flow T i0 ; gravito-magnetic field (Ai )
2PN stress T ij ; 3-dim. tensor field

Jan Steinhoff (CENTRA, IST) Spin and Quadrupole in Astrophysical Binaries Bad Honnef, February 19th, 2013 9 / 24



Quadrupole Deformation due to Spin
for neutron stars: Laarakkers, Poisson (1997)

Here m = 1.4M�
Dim.-less mass quadrupole: q
Dim.-less spin: χ
Quadratic fit is extremely good:

−q ≈ CES2χ2

CES2 = 4.3 ... 7.4, EOS dependent
Also depends on mass
For black holes CES2 = 1
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see Laarakkers, Poisson gr-qc/9709033

higher multipoles: Pappas, Apostolatos (2012)
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Tidal Quadrupole Deformation
for NS, e.g. Hinderer & Flanagan (2008); Damour, Nagar (2009); Binnington, Poisson (2009)

Linear NS perturbation, thus:

−Q = µ2E

Tidal force E (curvature)
Dim.-less 2nd Love number k2:

k2 =
3
2
µ2

R5

Compactness c =
Gm
R

0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.02

0.04

0.06

0.08

0.10

c

k
2

FPS

SLy

see Damour, Nagar arXiv:0906.0096

For certain realistic EOS it holds k2 ≈ 0.17− 0.52c
For black holes k2 = 0
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Quadrupole Action
see e.g. Porto, Rothstein (2008); Goldberger, Rothstein (2006)

Lquad =
1

mcu
BµνSµuαSαν︸ ︷︷ ︸

SSC preserving

+
CES2

2mcu
EµνSµαSαν︸ ︷︷ ︸

deformation due to spin

+
µ2

4u3 EµνEµν︸ ︷︷ ︸
tidal deformation

+ ...

Eµν ∼ Rµανβuαuβ Bµν ∼ 1
2εµραβRνσαβuρuσ Sµ = 1

2ε
µναβuνSαβ

mc , CES2 , and µ2: constants, matched to single object
Now: mc 6= m
From Bailey, Israel (1975):

Jµναβ = −6
∂L

∂Rµναβ

Covariant mass quadrupole: (for u = 1)

mass quadrupole ∼ 2
∂L
∂Eµν

=
CES2

mc
SµαSαν + µ2Eµν
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Motion in Schwarzschild background
Steinhoff, Puetzfeld (2012); similar model: Bini, Geralico (2013)

Conserved quantities:
E∂t , E∂φ , S, µ

Circular orbits, aligned spin
SSC: Sµνpν = 0

⇒ pν , Sµν fixed algebratically!

Binding energy:
e(lc) = E∂t/µ− 1

Orbital angular momentum: lc

spin effects for â2 = 1, CES2 = 1

Taylor-expansion: e(lc) = e0(lc) + e1(lc) + e2(lc) + ...

Scaling: e1 ∝ qâ2, eS2

2 ∝ −q2â2
2, eCES2

2 ∝ −CES2q2â2
2

Spin-induced quadrupole effects scale like second-order self-force (∼ q2)
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Results for Kerr background
Steinhoff, Puetzfeld (2012)

tidal effects for neutron stars and mass ratio q = 1
50

(k2 = 0.1, j2 = −0.01, R̂ = 5)

gravito-electric tidal effects gravito-magnetic tidal effects

Scaling: ek2
2 ∝ −k2q4R̂5 ej2

2 ∝ j2q4R̂5

For â1 = 1 circular orbits are possible at the horizon!

Limit due to tidal disruption:
ek2

2
e0

.
k2

4R̂
∼ 10−2
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Surface Terms and ADM Hamiltonian
ADM =̂ Arnowitt, Deser, Misner (1960)

Einstein–Hilbert action plus (Regge–Teitelboim–)York–Gibbons–Hawking
(“Trace K”) surface term:

Sfield =
1

16πG

∫
d4x
√
−gR − 1

16πG

∮
d3y 2

√
γK

ADM energy given by surface integral

EADM =
1

16πG

∮
d2si [gij,j − gjj,i ]

HADM =̂ ADM energy EADM expressed in terms of canonical variables
Canonical field variables: hTT

ij , πijTT TT =̂ transverse-traceless

DeWitt (1967)

“General relativity is unique among field theories in that its energy may always
be expressed as a surface integral.”
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Canonical Variables to Linear Order in Spin
Steinhoff, Schäfer (2009)

Method: transform action into the form
∫

dt(q̇ p − H)

Flat spacetime: Newton-Wigner center and spin are canonical

Canonical ẑ i , Ŝij , and Λ̂ij are “simple” generalizations of flat space case
Canonical matter momentum p̂i :

pi = p̂i +
1
2

Ŝkj Γ
kj

i + ...

cf. electrodynamics: pi = p̂i − qAi

Canonical field momentum π̂ijTT has delta corrections:

πijTT = π̂ijTT +
4πG
m2 p̂mp̂k ŜlmδTTij

kl δ + ...

can not be given in closed form explicitly
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Results so far
from various authors with different methods

for maximally rotating objects: S =
Gm2χ

c
χ = 1

order 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

HN

PM + H1PN + H2PN + H2.5PN + H3PN + H3.5PN + H4PN + H4.5PN

SO + HLO
SO + HNLO

SO + HN2LO
SO + HLO,R

SO + HN3LO
SO

S2
1 + HLO

S2
1

+ HNLO
S2

1
+ HN2LO

S2
1

+ HLO,R
S2

1

S1S2 + HLO
S1S2

+ HNLO
S1S2

+ HN2LO
S1S2

+ HLO,R
S1S2

spin3 + HLO
S3 + HNLO

S3

spin4 + HLO
S4

...
. . .

H known EOM known for Black Holes not known (yet)

Radiation field known to 2PN order, multipoles to 2.5PN order.
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Spin-Orbit: Gyro-Gravitomagnetic Ratios gEOB
S + gEOB

S∗
for equal masses and circular orbits, Nagar (2011); Barausse, Buonanno (2011)

5 10 15 20
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r [M]
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+
gE
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∗

LO contribution
contributions to NLO
contributions to N2LO
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Newtonian case revised
in preparation, with S. Chakrabarti and T. Delsate

Motivation:
Adiabatic tidal effects may not be sufficient [Maselli et.al. (2012)]
Resonances of orbital motion and oscillation modes of the object
Better understanding of tidal interactions

L =
1
2

m Ṙ2
∗ −m Φ(R∗)−

1
2

Q ij∂i∂j Φ(R∗) + ...

Idea: response function for Q ij

[Goldberger, Rothstein, hep-th/0511133]

Q ij (t) = −1
2

∫
dt ′Gij

kl (t , t ′)Φ,kl (t ′)

From Newtonian tidal theory:

F (ω) =
∑

n

I2
n

ω2
n − ω2

ωn are the mode frequencies
In related to overlap integrals
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Problems in the relativistic case

Definition of matter-multipoles in time dependent situations?
Tentative solution by analogy to optics: need phase shift?

neutron star

incoming wave outgoing wave

Quadrupole diverges starting at ω2, logarithmic scale dependence
[Goldberger, Ross, arXiv:0912.4254]

similar: diverging BH Love numbers in higher dimensions
[Kol, Smolkin, arXiv:1110.3764]

Dimensional regularization not feasible for NS
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