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Motion in General Relativity

Motivation:

@ Gravitational wave experiments: Advanced LIGO in 2015
(possibly >40 detections of binary NS mergers per year)

@ Pulsar timing via radio astronomy: double pulsar, SKA, ...
(also optical: WD+WD binary J0651+2844)

@ Formation of supermassive BH vs. gravitational recoil ("kick”)
@ Gravity Probe B
@ SgrA*, LRR, Planetary motion, ...
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Motion in General Relativity

Motivation:

@ Gravitational wave experiments: Advanced LIGO in 2015
(possibly >40 detections of binary NS mergers per year)

@ Pulsar timing via radio astronomy: double pulsar, SKA, ...
(also optical: WD+WD binary J0651+2844)

@ Formation of supermassive BH vs. gravitational recoil ("kick”)
@ Gravity Probe B
@ SgrA*, LRR, Planetary motion, ...

=- most gravity experiments require to study the motion!

Possibilities: analytic approximations and/or numeric simulations
Here: small mass ratio approximation

geodesic motion self-force corrections from internal structure
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EOM for test-bodies with internal structure

see Steinhoff, Puetzfeld (2010) for a derivation using Tulczyjew’s method

@ Geodesic equation: momentum p,,
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EOM for test-bodies with internal structure

see Steinhoff, Puetzfeld (2010) for a derivation using Tulczyjew’s method

D, 1 ‘
DS
a- = 2p[.“ UV]
@ Geodesic equation: momentum p,,

@ Mathisson (1937), Papapetrou (1951):  spin/ dipole S*”
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D 1 . 1 ,
% =0 _ERypﬁaUde” _éRVpﬁa;,uJVpBQ
DS 4
57— = 2,0[“ ! +§ R{Xﬁ/)[ﬂ JVlrBa
Sy I
g =7 0!
@ Geodesic equation: momentum p,,
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EOM for test-bodies with internal structure

see Steinhoff, Puetzfeld (2010) for a derivation using Tulczyjew’s method

D 1 . 1 Ber
% =0 _ERupﬁaUde” _éRVpﬁa;,uJVpSQ
DS 4
57— = 2,0[“ ! +§ RM/)[H JVlrBa
Sy I
g =7 0!
@ Geodesic equation: momentum p,,
@ Mathisson (1937), Papapetrou (1951):  spin/ dipole S*”
@ Dixon (~1974): quadrupole JHve8 ..

@ EOM for p, and S** follow from theory! T#¥,, =0 ~ EOM

Conserved Quantities:
@ For a Killing vector field ¢*:  E; = p,&* + 18"V ¢,
@ Neglecting J#**# etc.:  mass m:=,/=p,p" or m:= —utp, (SSCdep.)
spin-length S = /1S, S
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Quadrupole Deformation due to Spin

for neutron stars: Laarakkers, Poisson (1997)

@ Here m=1.4M,
@ Dim.-less mass quadrupole: g
@ Dim.-less spin: x
@ Quadratic fit is extremely good: o

w

3
™

N

—q ~ Cgg X2

Cese = 4.3...7.4, EOS dependent
@ Also depends on mass
@ For black holes Cgse = 1

see Laarakkers, Poisson gr-qc/9709033

@ higher multipoles: Pappas, Apostolatos (2012)
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Quadrupole Action

see Porto, Rothstein (2008)

1 Cese
Ry = —pu /U, UF + —B,, $"u, S + ZESF,, 8,8 + ...
= SSC preserving deformation due to spin

E., ~ Ruapu®u® B, ~ €upapRuePuru’ St = 1Py, S,

@ 1 and Cgse: constants, matched to single object
@ Notice: u#m+#m
@ Connection to Dixon’s EOM:  Bailey, Israel (1975)

oL

Jrves — g2
ORyvas

@ Covariant mass quadrupole: (foru=1)

oL Cgs

)
Q O0E,.. 1

5" 8
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Motion in Schwarzschild background

Steinhoff, Puetzfeld (2012); there also tidal deformation and Kerr background are covered

@ Conserved quantities:
Eat, Ea¢, S, 1%
@ Circular orbits, aligned spin
@ SSC: S*¥p, =0
= p, , S"¥ fixed algebratically!

@ Binding energy:
e(le) = Ea /1 — 1
@ Orbital angular momentum: I,
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@ Circular orbits, aligned spin
@ SSC: S*¥p, =0
= p, , S fixed algebratically!

@ Binding energy:
e(le) = Ea /1 — 1
@ Orbital angular momentum: I,

@ Taylor-expansion:

@ Scaling: ey x qap,

— self—force
— linear test—spin
— quadratic test—spin
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@ Spin-induced quadrupole effects scale like second-order self-force (~ ¢?)
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Motion in Schwarzschild background

Steinhoff, Puetzfeld (2012); there also tidal deformation and Kerr background are covered

— self—force
— linear test—spin 1
" — quadratic test-spin q:a)
@ Conserved quantities: — Cyg2-quadrupole
Ea, Es,, S, 1 ) ‘ ‘ ‘ ‘ :
@ Circular orbits, aligned spin v !
10~ ,\,
@ SSC: S*p, =0 104t ]
= p, , S* fixed algebratically! 3105
A 10
o 1077
@ Binding energy: 08l
e(le) = Ea/pn—1 o j
@ Orbital angular momentum: I, 35 20 15 50 55 60
le
spin effects for & =1, Cgge = 1
@ Taylor-expansion: e(le) = eo(le) + e1(le) + ex(le) + ...
. A 2 A C, A
@ Scaling: e x qap, es x—q?&, 8,5 o« —Crs2 G283

@ Spin-induced quadrupole effects scale like second-order self-force (~ ¢?)
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Motion in Schwarzschild background

Steinhoff, Puetzfeld (2012); there also tidal deformation and Kerr background are covered

— self—force
— linear test—spin
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. — quadratic test—spin
@ Conserved quantities: _ CESZ—qllJadrupolel 1000
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1072}
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3 06)
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@ Binding energy: 08l
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Tidal deformation: Newtonian case revised

in preparation, with S. Chakrabarti and T. Delsate

Motivation:
@ Adiabatic tidal effects may not be sufficient [Maselli et.al. (2012)]
@ Resonances of orbital motion and oscillation modes of the object
@ Better understanding of tidal interactions
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@ Idea: response function for Q7 06F
[Goldberger, Rothstein, hep-th/0511133] 04rF

% 02¢
f—f/dt’ Fl(t t)o u(t) & <

0.0
w

o _ L
@ From Newtonian tidal theory: 02
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@ wp are the mode frequencies

. wR/2n
@ |, related to overlap integrals

response function F(w) for the quadrupole Q7
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