Gravitational Quadrupole Contributions to the Equations of Motion of Compact Objects

Jan Steinhoff

Centro Multidisciplinar de Astrofísica (CENTRA) Instituto Superior Técnico (IST) Lisbon

DPG Spring Meeting, March 1st, 2013, Jena, Germany

Supported by **DFG** through STE 2017/1-1

- Gravitational wave experiments: Advanced LIGO in 2015 (possibly >40 detections of binary NS mergers per year)
- Pulsar timing via radio astronomy: double pulsar, SKA, ... (also optical: WD+WD binary J0651+2844)
- Formation of supermassive BH vs. gravitational recoil ("kick")
- Gravity Probe B
- SgrA*, LRR, Planetary motion, ...
- \Rightarrow most gravity experiments require to study the motion!

Possibilities: analytic approximations and/or numeric simulations Here: small mass ratio approximation

- Gravitational wave experiments: Advanced LIGO in 2015 (possibly >40 detections of binary NS mergers per year)
- Pulsar timing via radio astronomy: double pulsar, SKA, ... (also optical: WD+WD binary J0651+2844)
- Formation of supermassive BH vs. gravitational recoil ("kick")
- Gravity Probe B
- SgrA*, LRR, Planetary motion, ...
- \Rightarrow most gravity experiments require to study the motion!

Possibilities: analytic approximations and/or numeric simulations Here: small mass ratio approximation

- Gravitational wave experiments: Advanced LIGO in 2015 (possibly >40 detections of binary NS mergers per year)
- Pulsar timing via radio astronomy: double pulsar, SKA, ... (also optical: WD+WD binary J0651+2844)
- Formation of supermassive BH vs. gravitational recoil ("kick")
- Gravity Probe B
- SgrA*, LRR, Planetary motion, ...
- \Rightarrow most gravity experiments require to study the motion!

Possibilities: analytic approximations and/or numeric simulations Here: small mass ratio approximation

- Gravitational wave experiments: Advanced LIGO in 2015 (possibly >40 detections of binary NS mergers per year)
- Pulsar timing via radio astronomy: double pulsar, SKA, ... (also optical: WD+WD binary J0651+2844)
- Formation of supermassive BH vs. gravitational recoil ("kick")
- Gravity Probe B
- SgrA*, LRR, Planetary motion, ...
- \Rightarrow most gravity experiments require to study the motion!

Possibilities: analytic approximations and/or numeric simulations Here: small mass ratio approximation

geodesic motion

- Gravitational wave experiments: Advanced LIGO in 2015 (possibly >40 detections of binary NS mergers per year)
- Pulsar timing via radio astronomy: double pulsar, SKA, ... (also optical: WD+WD binary J0651+2844)
- Formation of supermassive BH vs. gravitational recoil ("kick")
- Gravity Probe B
- SgrA*, LRR, Planetary motion, ...
- \Rightarrow most gravity experiments require to study the motion!

Possibilities: analytic approximations and/or numeric simulations Here: small mass ratio approximation

geodesic motion self-force

- Gravitational wave experiments: Advanced LIGO in 2015 (possibly >40 detections of binary NS mergers per year)
- Pulsar timing via radio astronomy: double pulsar, SKA, ... (also optical: WD+WD binary J0651+2844)
- Formation of supermassive BH vs. gravitational recoil ("kick")
- Gravity Probe B
- SgrA*, LRR, Planetary motion, ...
- \Rightarrow most gravity experiments require to study the motion!

Possibilities: analytic approximations and/or numeric simulations Here: small mass ratio approximation

geodesic motion

self-force

corrections from internal structure

see Steinhoff, Puetzfeld (2010) for a derivation using Tulczyjew's method

$$\frac{Dp_{\mu}}{d\tau} = \mathbf{0} - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} R_{\nu\rho\beta\alpha;\mu} J^{\nu\rho\beta\alpha}$$
$$\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu} u^{\nu]} + \frac{4}{3} R_{\alpha\beta\rho} [^{\mu} J^{\nu]\rho\beta\alpha}$$
$$\frac{DJ^{\mu\nu\alpha\beta}}{d\tau} = \mathbf{?} \mathbf{?} \mathbf{?}$$

Geodesic equation:

momentum p_{μ}

- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974):
- EOM for p_{μ} and $S^{\mu\nu}$ follow from theory! $T^{\mu\nu}_{;\nu} = 0 \rightsquigarrow EOM$

Conserved Quantities:

- For a Killing vector field ξ^{μ} : $E_{\xi} = p_{\mu}\xi^{\mu} + \frac{1}{2}S^{\mu\nu}\nabla_{\mu}\xi_{\nu}$
- Neglecting $J^{\mu\nu\alpha\beta}$ etc.: mass $\underline{m} := \sqrt{-p_{\mu}p^{\mu}}$ or $m := -u^{\mu}p_{\mu}$ (SSC dep.)

spin-length $S=\sqrt{rac{1}{2}S_{\mu
u}S^{\mu
u}}$

see Steinhoff, Puetzfeld (2010) for a derivation using Tulczyjew's method

$$\frac{D\rho_{\mu}}{d\tau} = 0 - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} R_{\nu\rho\beta\alpha;\mu} J^{\nu\rho\beta\alpha}$$
$$\frac{DS^{\mu\nu}}{d\tau} = 2\rho^{[\mu} u^{\nu]} + \frac{4}{3} R_{\alpha\beta\rho}^{[\mu} J^{\nu]\rho\beta\alpha}$$
$$\frac{DJ^{\mu\nu\alpha\beta}}{d\tau} = ????$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951): ۲
- Dixon (~1974):
- EOM for p_{μ} and $S^{\mu\nu}$ follow from theory! $T^{\mu\nu}{}_{,\nu} = 0 \iff EOM$

- For a Killing vector field ξ^{μ} : $E_{\xi} = p_{\mu}\xi^{\mu} + \frac{1}{2}S^{\mu\nu}\nabla_{\mu}\xi_{\nu}$
- Neglecting $J^{\mu\nu\alpha\beta}$ etc.: mass $\underline{m} := \sqrt{-p_{\mu}p^{\mu}}$ or $m := -u^{\mu}p_{\mu}$ (SSC dep.)

spin-length
$$S=\sqrt{rac{1}{2}S_{\mu
u}S^{\mu
u}}$$

momentum p_{μ}

spin / dipole $S^{\mu\nu}$

see Steinhoff, Puetzfeld (2010) for a derivation using Tulczyjew's method

$$\frac{D\rho_{\mu}}{d\tau} = 0 - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} R_{\nu\rho\beta\alpha;\mu} J^{\nu\rho\beta\alpha}$$
$$\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu} u^{\nu]} + \frac{4}{3} R_{\alpha\beta\rho}^{[\mu} J^{\nu]\rho\beta\alpha}$$
$$\frac{DJ^{\mu\nu\alpha\beta}}{d\tau} = ????$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974):

momentum p_{μ} spin / dipole $S^{\mu\nu}$ quadrupole $J^{\mu\nu\alpha\beta}, \dots$ $T^{\mu\nu}_{\mu\nu\alpha\beta} = 0 \implies FOM$

• EOM for p_{μ} and $S^{\mu\nu}$ follow from theory! 7

Conserved Quantities:

- For a Killing vector field ξ^{μ} : $E_{\xi} = p_{\mu}\xi^{\mu} + \frac{1}{2}S^{\mu\nu}\nabla_{\mu}\xi_{\nu}$
- Neglecting $J^{\mu\nu\alpha\beta}$ etc.: mass $\underline{m}:=\sqrt{-p_{\mu}p^{\mu}}$ or $m:=-u^{\mu}p_{\mu}$ (SSC dep.)

see Steinhoff, Puetzfeld (2010) for a derivation using Tulczyjew's method

$$\frac{D\rho_{\mu}}{d\tau} = 0 - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} R_{\nu\rho\beta\alpha;\mu} J^{\nu\rho\beta\alpha}$$
$$\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu} u^{\nu]} + \frac{4}{3} R_{\alpha\beta\rho}^{[\mu} J^{\nu]\rho\beta\alpha}$$
$$\frac{DJ^{\mu\nu\alpha\beta}}{d\tau} = ????$$

- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974):
- EOM for p_{μ} and $S^{\mu\nu}$ follow from theory!

Conserved Quantities:

- For a Killing vector field ξ^{μ} : $E_{\xi} = p_{\mu}\xi^{\mu} + \frac{1}{2}S^{\mu\nu}\nabla_{\mu}\xi_{\nu}$
- Neglecting $J^{\mu\nu\alpha\beta}$ etc.: mass $\underline{m} := \sqrt{-p_{\mu}p^{\mu}}$ or $m := -u^{\mu}p_{\mu}$ (SSC dep.)

spin-length $S=\sqrt{rac{1}{2}S_{\mu
u}S^{\mu
u}}$

momentum p_{μ}

spin / dipole $S^{\mu\nu}$ quadrupole $J^{\mu\nu\alpha\beta}, \ldots$

 $T^{\mu\nu} = 0 \iff \text{EOM}$

see Steinhoff, Puetzfeld (2010) for a derivation using Tulczyjew's method

$$\frac{D\rho_{\mu}}{d\tau} = 0 - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} R_{\nu\rho\beta\alpha;\mu} J^{\nu\rho\beta\alpha}$$
$$\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu} u^{\nu]} + \frac{4}{3} R_{\alpha\beta\rho}^{[\mu} J^{\nu]\rho\beta\alpha}$$
$$\frac{DJ^{\mu\nu\alpha\beta}}{d\tau} = ????$$

- Geodesic equation: momentum p_{μ} spin / dipole $S^{\mu
 u}$
 - Mathisson (1937), Papapetrou (1951):
 - Dixon (~1974):
 - EOM for p_{μ} and $S^{\mu\nu}$ follow from theory!

Conserved Quantities:

- For a Killing vector field ξ^{μ} : $E_{\xi} = p_{\mu}\xi^{\mu} + \frac{1}{2}S^{\mu\nu}\nabla_{\mu}\xi_{\nu}$
- Neglecting $J^{\mu\nu\alpha\beta}$ etc.: mass $\underline{m} := \sqrt{-\rho_{\mu}\rho^{\mu}}$ or $m := -u^{\mu}\rho_{\mu}$ (SSC dep.) spin-length $S = \sqrt{\frac{1}{2}S_{\mu\nu}S^{\mu\nu}}$

quadrupole $J^{\mu\nu\alpha\beta}, \ldots$

 $T^{\mu\nu} = 0 \iff \text{EOM}$

Quadrupole Deformation due to Spin

for neutron stars: Laarakkers, Poisson (1997)

- Here $m = 1.4 M_{\odot}$
- Dim.-less mass quadrupole: q
- Dim.-less spin: χ
- Quadratic fit is extremely good:

$$- q pprox \mathcal{C}_{ES^2} \chi^2$$

- C_{ES²} = 4.3 ... 7.4, EOS dependent
- Also depends on mass
- For black holes $C_{ES^2} = 1$

see Laarakkers, Poisson gr-qc/9709033

higher multipoles: Pappas, Apostolatos (2012)

Quadrupole Action

see Porto, Rothstein (2008)

$$\begin{split} R_{M} &= -\mu \underbrace{\sqrt{u_{\mu}u^{\mu}}}_{=:u} + \underbrace{\frac{1}{\mu u} B_{\mu\nu} S^{\mu} u_{\alpha} S^{\alpha\nu}}_{\text{SSC preserving}} + \underbrace{\frac{C_{ES^{2}}}{2\mu u} E_{\mu\nu} S^{\mu}{}_{\alpha} S^{\alpha\nu}}_{\text{deformation due to spin}} + \dots \\ E_{\mu\nu} &\sim R_{\mu\alpha\nu\beta} u^{\alpha} u^{\beta} \qquad B_{\mu\nu} \sim \frac{1}{2} \epsilon_{\mu\rho\alpha\beta} R_{\nu\sigma}{}^{\alpha\beta} u^{\rho} u^{\sigma} \qquad S^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} u_{\nu} S_{\alpha\beta}$$

- μ and C_{ES^2} : constants, matched to single object
- Notice: $\mu \neq m \neq \underline{m}$
- Connection to Dixon's EOM: Bailey, Israel (1975)

$$J^{\mu\nu\alpha\beta} = -6\frac{\partial L}{\partial R_{\mu\nu\alpha\beta}}$$

• Covariant mass quadrupole: (for u = 1)

$$Q^{\mu
u}\sim 2rac{\partial L}{\partial E_{\mu
u}}=rac{C_{ES^2}}{\mu}S^{\mu}{}_{lpha}S^{lpha
u}$$

in preparation, with S. Chakrabarti and T. Delsate

Motivation:

- Adiabatic tidal effects may not be sufficient [Maselli et.al. (2012)]
- Resonances of orbital motion and oscillation modes of the object
- Better understanding of tidal interactions

$$L=rac{1}{2}m\dot{\mathbf{R}}_{*}^{2}-m\Phi(\mathbf{R}_{*})-rac{1}{2}Q^{jj}\partial_{j}\partial_{j}\Phi(\mathbf{R}_{*})+...$$

Idea: response function for Q^{ij}
 [Goldberger, Rothstein, hep-th/0511133]

$$Q^{ij}(t) = -\frac{1}{2} \int dt' F^{ij}_{kl}(t,t') \Phi_{kl}(t') \frac{2}{2} \int dt' F^{ij}_{kl}(t,t') \Phi_{kl}(t') \frac{2}{2} \int dt' F^{ij}_{kl}(t,t') \Phi_{kl}(t') \frac{2}{2} \int dt' F^{ij}_{kl}(t,t') \Phi_{kl}(t,t') \Phi_{kl}(t,t'$$

• From Newtonian tidal theory:

$$F(\omega) = \sum_{n} \frac{I_n^2}{\omega_n^2 - \omega^2}$$

ω_n are the mode frequencies *I_n* related to overlap integrals

in preparation, with S. Chakrabarti and T. Delsate

Motivation:

- Adiabatic tidal effects may not be sufficient [Maselli et.al. (2012)]
- · Resonances of orbital motion and oscillation modes of the object
- Better understanding of tidal interactions

$$L = \frac{1}{2}m\dot{\mathbf{R}}_*^2 - m\Phi(\mathbf{R}_*) - \frac{1}{2}Q^{ij}\partial_i\partial_j\Phi(\mathbf{R}_*) + \dots$$

$$Q^{ij}(t) = -\frac{1}{2} \int dt' F^{ij}_{kl}(t,t') \Phi_{,kl}(t') \overset{\mathbf{a}}{=}$$

• From Newtonian tidal theory:

$$F(\omega) = \sum_{n} \frac{I_n^2}{\omega_n^2 - \omega^2}$$

ω_n are the mode frequencies *I*_n related to overlap integrals

in preparation, with S. Chakrabarti and T. Delsate

Motivation:

- Adiabatic tidal effects may not be sufficient [Maselli et.al. (2012)]
- Resonances of orbital motion and oscillation modes of the object
- Better understanding of tidal interactions

$$L = \frac{1}{2}m\dot{\mathbf{R}}_*^2 - m\Phi(\mathbf{R}_*) - \frac{1}{2}Q^{ij}\partial_i\partial_j\Phi(\mathbf{R}_*) + \dots$$

Idea: response function for Q^{ij} 06 [Goldberger, Rothstein, hep-th/0511133] 04 0.2 0.0 -0.2• From Newtonian tidal theory: -0.4 $F(\omega) = \sum_{n} \frac{I_n^2}{\omega_n^2 - \omega^2}$ -0.60.1 0.0 • ω_n are the mode frequencies • I_n related to overlap integrals

in preparation, with S. Chakrabarti and T. Delsate

Motivation:

- Adiabatic tidal effects may not be sufficient [Maselli et.al. (2012)]
- Resonances of orbital motion and oscillation modes of the object
- Better understanding of tidal interactions

$$L = \frac{1}{2}m\dot{\mathbf{R}}_*^2 - m\Phi(\mathbf{R}_*) - \frac{1}{2}Q^{ij}\partial_i\partial_j\Phi(\mathbf{R}_*) + \dots$$

• Idea: response function for *Q^{ij}* [Goldberger, Rothstein, hep-th/0511133]

$$Q^{ij}(t) = -\frac{1}{2} \int dt' F^{ij}_{kl}(t,t') \Phi_{,kl}(t') \overset{\tilde{v}_{kl}}{\underset{\tilde{v}_{kl}}{\leftarrow}}$$

• From Newtonian tidal theory:

$$F(\omega) = \sum_{n} \frac{I_n^2}{\omega_n^2 - \omega^2}$$

- ω_n are the mode frequencies
- In related to overlap integrals

Thank you for your attention

and special thanks to my collaborators

Sayan Chakrabarti Térence Delsate Dirk Puetzfeld

and for support by the German Research Foundation DFG