Action principles for extended bodies in gravitational and electromagnetic fields

Jan Steinhoff



ZARM, University of Bremen

3rd Workshop of the German-Israeli Foundation, June 20th, 2013, Bremen "Exploration of Electrodynamics"

#### Action principles for extended bodies

#### 2 Applications

3 Tidal polarization beyond the adiabatic case

#### 4 Conclusions

- Charge/mass density  $\rho$  centered around **z**, external field  $\phi_{\text{ext}}$
- Can Taylor expand:

$$\phi_{\text{ext}} = \phi_{\text{ext}}(\mathbf{z}) + \partial_i \phi_{\text{ext}}(\mathbf{z}) x^i + \frac{1}{2} \partial_i \partial_j \phi_{\text{ext}}(\mathbf{z}) x^i x^j + \dots$$

•  $\Delta \phi_{\text{ext}} = 0$  around **z**: Make it tracefree,  $\hat{x}^{k_l} = [x^{k_1} x^{k_2} \dots x^{k_l}]^{\text{STF}}$ 

$$\phi_{\mathsf{ext}} = \sum_{l} rac{1}{l!} \partial_{\mathcal{K}_{l}} \phi_{\mathsf{ext}}(\mathbf{Z}) \hat{x}^{\mathcal{K}_{l}}$$

• In matter-field-interaction Lagrangian:

$$L_{\rm int} = -\int d^3x \,\rho\phi_{\rm ext} = -\sum_l \frac{1}{l!} Q^{K_l} \partial_{K_l} \phi_{\rm ext}(\mathbf{z})$$

Multipole moments:

$$Q^{K_l} = \int d^3x \, \rho \hat{x}^{K_l}$$

• Examples:

$$\mathcal{L}_{\mathsf{el.\ dipole}} = - \mathcal{Q}_e^{\kappa} \mathcal{F}_{0\kappa},$$

- Charge/mass density  $\rho$  centered around  $\mathbf{z},$  external field  $\phi_{\text{ext}}$
- Can Taylor expand:

$$\phi_{\mathsf{ext}} = \phi_{\mathsf{ext}}(\mathbf{z}) + \partial_i \phi_{\mathsf{ext}}(\mathbf{z}) x^i + \frac{1}{2} \partial_i \partial_j \phi_{\mathsf{ext}}(\mathbf{z}) x^i x^j + \dots$$

•  $\Delta \phi_{\text{ext}} = 0$  around **z**: Make it tracefree,  $\hat{x}^{k_l} = [x^{k_1} x^{k_2} \dots x^{k_l}]^{\text{STF}}$ 

$$\phi_{\mathsf{ext}} = \sum_{I} \frac{1}{I!} \partial_{\mathcal{K}_{I}} \phi_{\mathsf{ext}}(\mathbf{z}) \hat{x}^{\mathcal{K}_{I}}$$

• In matter-field-interaction Lagrangian:

$$L_{\rm int} = -\int d^3x \,\rho\phi_{\rm ext} = -\sum_l \frac{1}{l!} Q^{K_l} \partial_{K_l} \phi_{\rm ext}(\mathbf{z})$$

Multipole moments:

$$Q^{K_l} = \int d^3x \, \rho \hat{x}^{K_l}$$

• Examples:

$$L_{\rm el.\ dipole} = - Q_e^k F_{0k},$$

- Charge/mass density  $\rho$  centered around  $\mathbf{z},$  external field  $\phi_{\text{ext}}$
- Can Taylor expand:

$$\phi_{\mathsf{ext}} = \phi_{\mathsf{ext}}(\mathbf{z}) + \partial_i \phi_{\mathsf{ext}}(\mathbf{z}) x^i + \frac{1}{2} \partial_i \partial_j \phi_{\mathsf{ext}}(\mathbf{z}) x^i x^j + \dots$$

•  $\Delta \phi_{\text{ext}} = 0$  around **z**: Make it tracefree,  $\hat{x}^{K_l} = [x^{k_1} x^{k_2} \dots x^{k_l}]^{\text{STF}}$ 

$$\phi_{\mathsf{ext}} = \sum_{l} \frac{1}{l!} \partial_{\mathcal{K}_{l}} \phi_{\mathsf{ext}}(\mathbf{z}) \hat{x}^{\mathcal{K}_{l}}$$

In matter-field-interaction Lagrangian:

$$L_{\text{int}} = -\int d^3x \,\rho\phi_{\text{ext}} = -\sum_{I} \frac{1}{I!} Q^{K_I} \partial_{K_I} \phi_{\text{ext}}(\mathbf{z})$$

Multipole moments:

$$Q^{K_l} = \int d^3x \, \rho \hat{x}^{K_l}$$

• Examples:

-el. dipole = 
$$-Q_e r_0$$

- Charge/mass density  $\rho$  centered around **z**, external field  $\phi_{\text{ext}}$
- Can Taylor expand:

$$\phi_{\text{ext}} = \phi_{\text{ext}}(\mathbf{z}) + \partial_i \phi_{\text{ext}}(\mathbf{z}) x^i + \frac{1}{2} \partial_i \partial_j \phi_{\text{ext}}(\mathbf{z}) x^i x^j + \dots$$

•  $\Delta \phi_{\text{ext}} = 0$  around **z**: Make it tracefree,  $\hat{x}^{K_l} = [x^{k_1} x^{k_2} \dots x^{k_l}]^{\text{STF}}$ 

$$\phi_{\mathsf{ext}} = \sum_{l} \frac{1}{l!} \partial_{\mathcal{K}_{l}} \phi_{\mathsf{ext}}(\mathbf{z}) \hat{x}^{\mathcal{K}_{l}}$$

• In matter-field-interaction Lagrangian:

$$L_{\text{int}} = -\int d^3x \,\rho\phi_{\text{ext}} = -\sum_{I} \frac{1}{I!} Q^{K_I} \partial_{K_I} \phi_{\text{ext}}(\mathbf{z})$$

Multipole moments:

$$Q^{K_l} = \int d^3x \, \rho \hat{x}^{K_l}$$

Examples:

$$L_{ ext{el. dipole}} = -Q_e^k F_{0k}, \qquad L_{ ext{gr. quadrupole}} = -rac{1}{2} Q_g^{kl} R_{0k0l}$$

see e.g. Bailey, Israel, Commun. math. Phys. 42 65 (1975)

• Generic worldline Lagrangian:

$$L_{M} = L_{M}(u^{\mu}, \Omega^{\mu\nu}, g_{\mu\nu}(z^{\alpha}), R_{\mu\nu\rho\sigma}(z^{\alpha}), F_{\mu\nu}(z^{\alpha}), \dots)$$

Multipole contribution to center-of-mass motion:

$$\delta L_{M} = \dots - \frac{1}{6} J^{
u
hoeta\beta\alpha} 
abla_{\mu} R_{
u
hoeta\alpha} \delta z^{\mu} - \frac{1}{2} D^{lphaeta} 
abla_{\mu} F_{lphaeta} \delta z^{\mu}$$
 $J^{\mu
ulphaeta} = -6 rac{\partial L_{M}}{\partial R_{\mu
ulphaeta}}, \quad D^{\mu
u} = -2 rac{\partial L_{M}}{\partial F_{\mu
u}}$ 

Multipole contribution to spin motion:

$$\frac{DS^{\mu\nu}}{d\tau} = 2S_{\alpha}{}^{[\mu}\Omega^{\nu]\alpha} = 2\rho{}^{[\mu}u^{\nu]} + \frac{4}{3}R{}^{[\mu}{}_{\rho\alpha\beta}J^{\nu]\rho\alpha\beta} + 2D{}^{\alpha[\mu}F^{\nu]}{}_{\alpha}$$

$$-G^{\nu\alpha}g_{\mu\alpha} + p_{\mu}u^{\nu} + S_{\mu\alpha}\Omega^{\nu\alpha} + \frac{2}{3}J^{\nu\rho\alpha\beta}R_{\mu\rho\alpha\beta} + D^{\nu\alpha}F_{\mu\alpha} = 0$$
$$G^{\mu\nu} = 2\frac{\partial L_{M}}{\partial g_{\mu\nu}}, \quad p_{\mu} = \frac{\partial L_{M}}{\partial u^{\mu}}, \quad S_{\mu\nu} = 2\frac{\partial L_{M}}{\partial \Omega^{\mu\nu}}$$

see e.g. Bailey, Israel, Commun. math. Phys. 42 65 (1975)

• Generic worldline Lagrangian:

$$L_{M} = L_{M}(u^{\mu}, \Omega^{\mu\nu}, g_{\mu\nu}(z^{\alpha}), R_{\mu\nu\rho\sigma}(z^{\alpha}), F_{\mu\nu}(z^{\alpha}), \dots)$$

Multipole contribution to center-of-mass motion:

$$\begin{split} \delta L_{M} &= \dots - \frac{1}{6} J^{\nu \rho \beta \alpha} \nabla_{\mu} R_{\nu \rho \beta \alpha} \delta z^{\mu} - \frac{1}{2} D^{\alpha \beta} \nabla_{\mu} F_{\alpha \beta} \delta z^{\mu} \\ J^{\mu \nu \alpha \beta} &= -6 \frac{\partial L_{M}}{\partial R_{\mu \nu \alpha \beta}}, \quad D^{\mu \nu} = -2 \frac{\partial L_{M}}{\partial F_{\mu \nu}} \end{split}$$

Multipole contribution to spin motion:

$$\frac{DS^{\mu\nu}}{d\tau} = 2S_{\alpha}{}^{[\mu}\Omega^{\nu]\alpha} = 2p^{[\mu}u^{\nu]} + \frac{4}{3}R^{[\mu}{}_{\rho\alpha\beta}J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\nu}F^{\nu]}{}_{\alpha}$$

$$-G^{\nu\alpha}g_{\mu\alpha} + p_{\mu}u^{\nu} + S_{\mu\alpha}\Omega^{\nu\alpha} + \frac{2}{3}J^{\nu\rho\alpha\beta}R_{\mu\rho\alpha\beta} + D^{\nu\alpha}F_{\mu\alpha} = 0$$
$$G^{\mu\nu} = 2\frac{\partial L_{M}}{\partial g_{\mu\nu}}, \quad p_{\mu} = \frac{\partial L_{M}}{\partial u^{\mu}}, \quad S_{\mu\nu} = 2\frac{\partial L_{M}}{\partial \Omega^{\mu\nu}}$$

see e.g. Bailey, Israel, Commun. math. Phys. 42 65 (1975)

• Generic worldline Lagrangian:

$$L_{M} = L_{M}(u^{\mu}, \Omega^{\mu\nu}, g_{\mu\nu}(z^{\alpha}), R_{\mu\nu\rho\sigma}(z^{\alpha}), F_{\mu\nu}(z^{\alpha}), \dots)$$

Multipole contribution to center-of-mass motion:

$$\delta L_{M} = \dots - \frac{1}{6} J^{
u
hoeta lpha} 
abla_{\mu} R_{
u
hoeta lpha} \delta z^{\mu} - \frac{1}{2} D^{lpha eta} 
abla_{\mu} F_{lpha eta} \delta z^{\mu}$$
 $J^{\mu
ulpha eta} = -6 \frac{\partial L_{M}}{\partial R_{\mu
ulpha eta}}, \quad D^{\mu
u} = -2 \frac{\partial L_{M}}{\partial F_{\mu
u}}$ 

• Multipole contribution to spin motion:

$$\frac{DS^{\mu\nu}}{d\tau} = 2S_{\alpha}{}^{[\mu}\Omega^{\nu]\alpha} = 2p{}^{[\mu}u^{\nu]} + \frac{4}{3}R{}^{[\mu}{}_{\rho\alpha\beta}J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\mu}F^{\nu]}{}_{\alpha}$$

$$-G^{\nu\alpha}g_{\mu\alpha} + p_{\mu}u^{\nu} + S_{\mu\alpha}\Omega^{\nu\alpha} + \frac{2}{3}J^{\nu\rho\alpha\beta}R_{\mu\rho\alpha\beta} + D^{\nu\alpha}F_{\mu\alpha} = 0$$
$$G^{\mu\nu} = 2\frac{\partial L_{M}}{\partial g_{\mu\nu}}, \quad p_{\mu} = \frac{\partial L_{M}}{\partial u^{\mu}}, \quad S_{\mu\nu} = 2\frac{\partial L_{M}}{\partial \Omega^{\mu\nu}}$$

see e.g. Bailey, Israel, Commun. math. Phys. 42 65 (1975)

• Generic worldline Lagrangian:

$$L_{M} = L_{M}(u^{\mu}, \Omega^{\mu\nu}, g_{\mu\nu}(z^{\alpha}), R_{\mu\nu\rho\sigma}(z^{\alpha}), F_{\mu\nu}(z^{\alpha}), \dots)$$

Multipole contribution to center-of-mass motion:

$$\delta L_{M} = \dots - \frac{1}{6} J^{
u
hoeta lpha} 
abla_{\mu} R_{
u
hoeta lpha} \delta z^{\mu} - \frac{1}{2} D^{lpha eta} 
abla_{\mu} F_{lpha eta} \delta z^{\mu}$$
 $J^{\mu
ulpha eta} = -6 \frac{\partial L_{M}}{\partial R_{\mu
ulpha eta}}, \quad D^{\mu
u} = -2 \frac{\partial L_{M}}{\partial F_{\mu
u}}$ 

• Multipole contribution to spin motion:

$$\frac{DS^{\mu\nu}}{d\tau} = 2S_{\alpha}{}^{[\mu}\Omega^{\nu]\alpha} = 2\rho{}^{[\mu}u^{\nu]} + \frac{4}{3}R{}^{[\mu}{}_{\rho\alpha\beta}J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\mu}F^{\nu]}{}_{\alpha}$$

$$egin{aligned} -G^{
ulpha}g_{\mulpha}+p_{\mu}u^{
u}+S_{\mulpha}\Omega^{
ulpha}+rac{2}{3}J^{
u
holphaeta}R_{\mu
holphaeta}+D^{
ulpha}F_{\mulpha}&=0\ G^{\mu
u}&=2rac{\partial L_{M}}{\partial g_{\mu
u}},\quad p_{\mu}=rac{\partial L_{M}}{\partial u^{\mu}},\quad S_{\mu
u}&=2rac{\partial L_{M}}{\partial \Omega^{\mu
u}} \end{aligned}$$

see e.g. Bailey, Israel, Commun. math. Phys. 42 65 (1975)

Generic worldline Lagrangian:

$$L_{M} = L_{M}(u^{\mu}, \Omega^{\mu\nu}, g_{\mu\nu}(z^{\alpha}), R_{\mu\nu\rho\sigma}(z^{\alpha}), F_{\mu\nu}(z^{\alpha}), \dots)$$

Multipole contribution to center-of-mass motion:

$$\begin{split} \delta L_{M} &= \dots - \frac{1}{6} J^{\nu \rho \beta \alpha} \nabla_{\mu} R_{\nu \rho \beta \alpha} \delta z^{\mu} - \frac{1}{2} D^{\alpha \beta} \nabla_{\mu} F_{\alpha \beta} \delta z^{\mu} \\ J^{\mu \nu \alpha \beta} &= -6 \frac{\partial L_{M}}{\partial R_{\mu \nu \alpha \beta}}, \quad D^{\mu \nu} = -2 \frac{\partial L_{M}}{\partial F_{\mu \nu}} \end{split}$$

• Multipole contribution to spin motion:

$$\frac{DS^{\mu\nu}}{d\tau} = 2S_{\alpha}{}^{[\mu}\Omega^{\nu]\alpha} = 2\rho{}^{[\mu}u^{\nu]} + \frac{4}{3}R^{[\mu}{}_{\rho\alpha\beta}J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\mu}F^{\nu]}{}_{\alpha}$$

$$egin{aligned} -G^{
ulpha}g_{\mulpha}+p_{\mu}u^{
u}+S_{\mulpha}\Omega^{
ulpha}+rac{2}{3}J^{
u
holphaeta}R_{\mu
holphaeta}+D^{
ulpha}F_{\mulpha}&=0\ G^{\mu
u}&=2rac{\partial L_{M}}{\partial g_{\mu
u}},\quad p_{\mu}=rac{\partial L_{M}}{\partial u^{\mu}},\quad S_{\mu
u}&=2rac{\partial L_{M}}{\partial \Omega^{\mu
u}} \end{aligned}$$

#### Equations of motion:

$$\frac{D\rho_{\mu}}{d\tau} = 0 - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} \nabla_{\mu} R_{\nu\rho\beta\alpha} J^{\nu\rho\beta\alpha} - \frac{1}{2} \nabla_{\mu} F_{\alpha\beta} D^{\alpha\beta} + \dots 
\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu} u^{\nu]} + \frac{4}{3} R^{[\mu}{}_{\rho\alpha\beta} J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\mu} F^{\nu]}{}_{\alpha} + \dots 
\frac{DJ^{\mu\nu\alpha\beta}}{d\tau} = ???, \quad \frac{D}{d\tau} D^{\mu\nu}{}_{\sigma} = ????$$

Geodesic equation:

#### momentum $p_{\mu}$

- Mathisson (1937), Papapetrou (1951):
  Dixon (~1974):
- spin / dipole  $S^{\mu\nu}$ quadrupole  $J^{\mu\nulphaeta}, \dots$

**Traditional approach:**  $T^{\mu\nu}_{;\nu} = 0 \iff \text{EOM}$ That is, EOM for  $p_{\mu}$  and  $S^{\mu\nu}$  follow from generic principles!

Action approach: assume generic covariant action Simple, but more restrictive. Still the resulting EOM have the same form!

Equations of motion:

$$\frac{D\rho_{\mu}}{d\tau} = 0 - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} \nabla_{\mu} R_{\nu\rho\beta\alpha} J^{\nu\rho\beta\alpha} - \frac{1}{2} \nabla_{\mu} F_{\alpha\beta} D^{\alpha\beta} + \dots 
\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu} u^{\nu]} + \frac{4}{3} R^{[\mu}{}_{\rho\alpha\beta} J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\mu} F^{\nu]}{}_{\alpha} + \dots 
\frac{DJ^{\mu\nu\alpha\beta}}{d\tau} = ???, \quad \frac{DD^{\mu\nu}}{d\tau} = ????$$

• Geodesic equation:momentum  $p_{\mu}$ • Mathisson (1937), Papapetrou (1951):spin / dipole  $S^{\mu\nu}$ • Dixon (~1974):quadrupole  $J^{\mu\nu\alpha\beta}, ...$ 

**Traditional approach:**  $T^{\mu\nu}_{;\nu} = 0 \implies \text{EOM}$ That is, EOM for  $\rho_{\mu}$  and  $S^{\mu\nu}$  follow from generic principles!

Action approach: assume generic covariant action Simple, but more restrictive. Still the resulting EOM have the same form!

Jan Steinhoff (ZARM)

Equations of motion:

$$\frac{Dp_{\mu}}{d\tau} = 0 - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} \nabla_{\mu} R_{\nu\rho\beta\alpha} J^{\nu\rho\beta\alpha} - \frac{1}{2} \nabla_{\mu} F_{\alpha\beta} D^{\alpha\beta} + \dots 
\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu} u^{\nu]} + \frac{4}{3} R^{[\mu}{}_{\rho\alpha\beta} J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\mu} F^{\nu]}{}_{\alpha} + \dots 
\frac{DJ^{\mu\nu\alpha\beta}}{d\tau} = ???, \frac{DD^{\mu\nu}}{d\tau} = ????$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974):

momentum  $p_{\mu}$ spin / dipole  $S^{\mu\nu}$ quadrupole  $J^{\mu\nu\alpha\beta}, \ldots$ 

**Traditional approach:**  $T^{\mu\nu}_{;\nu} = 0 \implies \text{EOM}$ That is, EOM for  $p_{\mu}$  and  $S^{\mu\nu}$  follow from generic principles!

**Action approach:** assume generic covariant action Simple, but more restrictive. Still the resulting EOM have the same form!

Equations of motion:

$$\frac{Dp_{\mu}}{d\tau} = 0 - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} \nabla_{\mu} R_{\nu\rho\beta\alpha} J^{\nu\rho\beta\alpha} - \frac{1}{2} \nabla_{\mu} F_{\alpha\beta} D^{\alpha\beta} + \dots 
\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu} u^{\nu]} + \frac{4}{3} R^{[\mu}{}_{\rho\alpha\beta} J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\mu} F^{\nu]}{}_{\alpha} + \dots 
\frac{DJ^{\mu\nu\alpha\beta}}{d\tau} = ???, \frac{DD^{\mu\nu}}{d\tau} = ????$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974):

momentum  $p_{\mu}$ spin / dipole  $S^{\mu\nu}$ quadrupole  $J^{\mu\nu\alpha\beta}, \ldots$ 

**Traditional approach:**  $T^{\mu\nu}_{;\nu} = 0 \rightsquigarrow \text{EOM}$ That is, EOM for  $p_{\mu}$  and  $S^{\mu\nu}$  follow from generic principles!

Action approach: assume generic covariant action Simple, but more restrictive. Still the resulting EOM have the same form!

Jan Steinhoff (ZARM)

#### Action principles for extended bodies

#### 2 Applications

3 Tidal polarization beyond the adiabatic case

#### 4 Conclusions

### Finite size effects in electrodynamics

Galley, Leibovich, Rothstein, PRL 105 094802 (2010)

Effective action: 
$$a^{\mu} = \frac{du^{\mu}}{d\tau}$$
,  $u = \sqrt{-u_{\rho}u^{\rho}}$   
 $S = \int d\tau \left[ m + eu^{\mu}A_{\mu} + C_{1}a_{\mu}a^{\mu} + C_{2}\frac{u_{\mu}a_{\nu}}{u}F^{\mu\nu} \right]$ 

For spherical symmetric charged shell:

$$C_1 = \frac{2}{9}e^2R, \qquad C_2 = \frac{1}{6}eR^2$$

Can be used to calculate corrections to the Abraham-Lorentz-Dirac force
Polarization effects:

$$S_{\text{polar}} = \int d\tau \left[ C_E R^3 F_{\mu\nu} F^{\mu\nu} + C_B R^3 u^{\mu} u^{\nu} F_{\mu\rho} F^{\rho}{}_{\nu} \right]$$

Induced dipole:

٥

$$D^{\mu\nu} = -2 \frac{\partial L_M}{\partial F_{\mu\nu}} = -4 C_E R^3 F^{\mu\nu} - 4 C_B R^3 u^{[\mu} F^{\nu]\rho} u_{\rho}$$

#### Quadrupole Effective Action

see e.g. Porto, Rothstein (2008); Goldberger, Rothstein (2006)

$$\begin{split} L_{\text{quad}} = \underbrace{\frac{1}{mu} B_{\mu\nu} S^{\mu} u_{\alpha} S^{\alpha\nu}}_{\text{SSC preserving}} + \underbrace{\frac{\mathcal{C}_{ES^{2}}}{2m_{c}u} E_{\mu\nu} S^{\mu}{}_{\alpha} S^{\alpha\nu}}_{\text{deformation due to spin}} + \underbrace{\frac{\mu_{2}}{4u^{3}} E_{\mu\nu} E^{\mu\nu}}_{\text{tidal deformation}} + \dots \\ E_{\mu\nu} \sim R_{\mu\alpha\nu\beta} u^{\alpha} u^{\beta} \qquad B_{\mu\nu} \sim \frac{1}{2} \epsilon_{\mu\rho\alpha\beta} R_{\nu\sigma}{}^{\alpha\beta} u^{\rho} u^{\sigma} \qquad S^{\mu} = \frac{1}{2} \epsilon^{\mu\nu\alpha\beta} u_{\nu} S_{\alpha\beta}$$

- m,  $C_{ES^2}$ , and  $\mu_2$ : constants, matched to single object
- From Bailey, Israel (1975):

$$J^{\mu\nu\alpha\beta} = -6\frac{\partial L}{\partial R_{\mu\nu\alpha\beta}}$$

• Covariant mass quadrupole: (for u = 1)

mass quadrupole 
$$\sim 2 \frac{\partial L}{\partial E_{\mu\nu}} = \frac{C_{ES^2}}{m_c} S^{\mu}{}_{\alpha} S^{\alpha\nu} + \mu_2 E^{\mu\nu}$$

# Tidal Quadrupole Deformation

for NS, e.g. Hinderer & Flanagan (2008); Damour, Nagar (2009); Binnington, Poisson (2009)

• Linear NS perturbation, thus:

 $-Q = \mu_2 E$ 

- Tidal force *E* (curvature)
- Dim.-less 2nd Love number k<sub>2</sub>:

$$k_2=\frac{3}{2}\frac{\mu_2}{R^5}$$

Measure for grav. polarizability

• Compactness 
$$c = \frac{Gr}{R}$$



see Damour, Nagar arXiv:0906.0096

- For certain realistic EOS it holds  $k_2 \approx 0.17 0.52c$
- For black holes k<sub>2</sub> = 0

# Quadrupole Deformation due to Spin

for neutron stars: Laarakkers, Poisson ApJ 512 282 (1999)

- Here  $m = 1.4 M_{\odot}$
- Dim.-less mass quadrupole: q
- Dim.-less spin: χ
- Quadratic fit is quite good:

$$-\boldsymbol{q}pprox \boldsymbol{\mathcal{C}_{ES^2}\chi^2}$$

• 
$$C_{ES^2} = 4.3 \dots 7.4$$
, EOS dependent

- Also depends on mass
- For black holes  $C_{ES^2} = 1$



see Laarakkers, Poisson (1999)

- RNS code by N. Stergioulas publicly available
- higher multipoles: Pappas, Apostolatos, PRL 108 231104 (2012)

## Application to test-particle motion

#### **Conserved Quantities:**

- For a Killing vector field  $\xi^{\mu}$ :  $E_{\xi} = p_{\mu}\xi^{\mu} + \frac{1}{2}S^{\mu\nu}\nabla_{\mu}\xi_{\nu}$
- Neglecting  $J^{\mu\nu\alpha\beta}$  etc.: mass  $\underline{m} := \sqrt{-p_{\mu}p^{\mu}}$  or  $\overline{m} := -u^{\mu}p_{\mu}$  (SSC dep.) spin-length  $S = \sqrt{\frac{1}{2}S_{\mu\nu}S^{\mu\nu}}$

**Method** to construct simple solutions to the EOM:

- Conserved quantities for stationary axisymmetric spacetime:
   E<sub>∂t</sub>, E<sub>∂φ</sub>, S, <u>m</u>
- Assume Circular orbits and aligned spin
- Spin supplementary condition:  $S^{\mu
  u}p_{
  u}=0$

 $\Rightarrow$   $ho_{
u}$  ,  $S^{\mu
u}$  fixed algebratically!

#### Literature

S. N. Rasband, PRL **30** 111 (1973) [spinning particle in Kerr]
K. P. Tod, F. de Felice, and M. Calvani, Nuovo Cim. B **34** 365 (1976)
S. Suzuki and K. Maeda, PRD **58** 023005 (1998) [investigation of chaos]
R. Hojman and S. Hojman, PRD **15** 2724 (1977) [spin+charge in Kerr-Newma
J. Steinhoff, D. Puetzfeld, PRD **86** 044033 (2012) [spin+quadrupole in Kerr]

## Application to test-particle motion

#### **Conserved Quantities:**

- For a Killing vector field  $\xi^{\mu}$ :  $E_{\xi} = p_{\mu}\xi^{\mu} + \frac{1}{2}S^{\mu\nu}\nabla_{\mu}\xi_{\nu}$
- Neglecting  $J^{\mu\nu\alpha\beta}$  etc.: mass  $\underline{m} := \sqrt{-p_{\mu}p^{\mu}}$  or  $\overline{m} := -u^{\mu}p_{\mu}$  (SSC dep.) spin-length  $S = \sqrt{\frac{1}{2}S_{\mu\nu}S^{\mu\nu}}$

Method to construct simple solutions to the EOM:

- Conserved quantities for stationary axisymmetric spacetime:
   *E*<sub>∂t</sub>, *E*<sub>∂φ</sub>, *S*, <u>m</u>
- Assume Circular orbits and aligned spin
- Spin supplementary condition:  $S^{\mu
  u}p_{
  u}=0$
- $\Rightarrow$   $p_{
  u}$  ,  $S^{\mu
  u}$  fixed algebratically!

#### Literature

S. N. Rasband, PRL 30 111 (1973) [spinning particle in Kerr]
K. P. Tod, F. de Felice, and M. Calvani, Nuovo Cim. B 34 365 (1976)
S. Suzuki and K. Maeda, PRD 58 023005 (1998) [investigation of chaos]
R. Hojman and S. Hojman, PRD 15 2724 (1977) [spin+charge in Kerr-Newma
J. Steinhoff, D. Puetzfeld, PRD 86 044033 (2012) [spin+quadrupole in Kerr]

# Application to test-particle motion

#### **Conserved Quantities:**

- For a Killing vector field  $\xi^{\mu}$ :  $E_{\xi} = p_{\mu}\xi^{\mu} + \frac{1}{2}S^{\mu\nu}\nabla_{\mu}\xi_{\nu}$
- Neglecting  $J^{\mu\nu\alpha\beta}$  etc.: mass  $\underline{m} := \sqrt{-p_{\mu}p^{\mu}}$  or  $\overline{m} := -u^{\mu}p_{\mu}$  (SSC dep.) spin-length  $S = \sqrt{\frac{1}{2}S_{\mu\nu}S^{\mu\nu}}$

Method to construct simple solutions to the EOM:

- Conserved quantities for stationary axisymmetric spacetime:
   *E*<sub>∂t</sub>, *E*<sub>∂φ</sub>, *S*, <u>m</u>
- Assume Circular orbits and aligned spin
- Spin supplementary condition:  $S^{\mu
  u}p_{
  u}=0$

 $\Rightarrow$   $p_{\nu}$  ,  $S^{\mu
u}$  fixed algebratically!

#### Literature

S. N. Rasband, PRL **30** 111 (1973) [spinning particle in Kerr]

- K. P. Tod, F. de Felice, and M. Calvani, Nuovo Cim. B 34 365 (1976)
- S. Suzuki and K. Maeda, PRD 58 023005 (1998)
- R. Hojman and S. Hojman, PRD 15 2724 (1977)

J. Steinhoff, D. Puetzfeld, PRD 86 044033 (2012)

Jan Steinhoff (ZARM)

[investigation of chaos]

[spin+charge in Kerr-Newman]

[spin+guadrupole in Kerr]

Steinhoff, Puetzfeld, PRD 86 044033 (2012) similar quadrupole model: Bini, Geralico PRD 87 024028 (2013)

Need conserved quantities:

$$E_{\partial_t}, E_{\partial_\phi}, S, m$$

- $E_{\partial_t}$  and  $E_{\partial_{\phi}}$  still conserved
- S conserved due to symmetry of action
- *m* constant parameter in action
- Binding energy:  $e(I_c) = E_{\partial_t}/m - 1$
- Orbital angular momentum:  $I_c$



Steinhoff, Puetzfeld, PRD **86** 044033 (2012) similar quadrupole model: Bini, Geralico PRD **87** 024028 (2013)

Need conserved quantities:

 $E_{\partial_t}, E_{\partial_\phi}, S, m$ 

- $E_{\partial_t}$  and  $E_{\partial_{\phi}}$  still conserved
- *S* conserved due to symmetry of action
- *m* constant parameter in action
- Binding energy:  $e(I_c) = E_{\partial_t}/m - 1$
- Orbital angular momentum: *I*<sub>c</sub>
  - Multipole expansion:
  - Scaling:  $e_1 \propto q \hat{a}_2$ ,



Steinhoff, Puetzfeld, PRD **86** 044033 (2012) similar quadrupole model: Bini, Geralico PRD **87** 024028 (2013)

Need conserved quantities:

$$E_{\partial_t}, E_{\partial_\phi}, S, m$$

- $E_{\partial_t}$  and  $E_{\partial_{\phi}}$  still conserved
- *S* conserved due to symmetry of action
- *m* constant parameter in action
- Binding energy:  $e(l_c) = E_{\partial_t}/m - 1$
- Orbital angular momentum: *I*<sub>c</sub>
  - Multipole expansion:
  - Scaling:  $e_1 \propto q \hat{a}_2$ ,



Steinhoff, Puetzfeld, PRD **86** 044033 (2012) similar quadrupole model: Bini, Geralico PRD **87** 024028 (2013)

Need conserved quantities:

 $E_{\partial_t}, E_{\partial_\phi}, S, m$ 

- $E_{\partial_t}$  and  $E_{\partial_{\phi}}$  still conserved
- *S* conserved due to symmetry of action
- *m* constant parameter in action
- Binding energy:  $e(I_c) = E_{\partial_t}/m - 1$
- Orbital angular momentum: *I*<sub>c</sub>
  - Multipole expansion:
  - Scaling:  $e_1 \propto q \hat{a}_2$ ,



# Results for Kerr background

Steinhoff, Puetzfeld, PRD 86 044033 (2012)



# Results for Kerr background

Steinhoff, Puetzfeld, PRD 86 044033 (2012)



# Results for Kerr background

Steinhoff, Puetzfeld, PRD 86 044033 (2012)



Jan Steinhoff (ZARM)

- Action principles for extended bodies
- 2 Applications
- 3 Tidal polarization beyond the adiabatic case
  - 4 Conclusions

#### Tidal polarization beyond the adiabatic case Chakrabarti, Delsate, Steinhoff, arXiv:1304.2228 [gr-gc]

- Adiabatic tidal effects may not be sufficient [Maselli et.al. (2012)]
- Resonances of orbital motion and oscillation modes of the object
- Idea: response function for Q<sup>ab</sup> [Goldberger, Rothstein, hep-th/0511133]

$$Q^{ab}(t) = -rac{1}{2}\int dt' \; F^{ab}_{\;\;cd}(t,t') \, E^{cd}(t')$$

Analysis in Fourier space:



 Analogy to optics: refractive index is response, need phase shift also: absorption from imaginary part of *F*(ω)

## Methods and results

Chakrabarti, Delsate, Steinhoff, arXiv:1304.2228 [gr-qc]

Method: inhomogeneous Regge-Wheeler equation

$$\frac{d^2X}{dr_*^2} + \left[ \left(1 - \frac{2M}{r}\right) \frac{l(l+1) - \frac{6M}{r}}{r^2} + \omega^2 \right] X = S,$$

- Analytic solutions for hom. equation are known: series of 1F1 and 2F1 [Mano, Suzuki, Takasugi, arXiv:gr-qc/9605057]
- Fit for the response:

$$F(\omega) = \sum_{n} \frac{q_n^2}{\omega_n^2 - \omega^2}$$

- Just like in Newtonian case!
- $\omega_n$  are the mode frequencies
- *q<sub>n</sub>* related to overlap integrals
- Matching scale is fitted, too



Jan Steinhoff (ZARM)

Bremen, June 20th, 2013 16 / 18

## Methods and results

Chakrabarti, Delsate, Steinhoff, arXiv:1304.2228 [gr-qc]

Method: inhomogeneous Regge-Wheeler equation

$$\frac{d^2X}{dr_*^2} + \left[ \left(1 - \frac{2M}{r}\right) \frac{l(l+1) - \frac{6M}{r}}{r^2} + \omega^2 \right] X = S,$$

- Analytic solutions for hom. equation are known: series of 1F1 and 2F1 [Mano, Suzuki, Takasugi, arXiv:gr-qc/9605057]
- Fit for the response:

$$F(\omega) = \sum_{n} \frac{q_n^2}{\omega_n^2 - \omega^2}$$

- Just like in Newtonian case!
- $\omega_n$  are the mode frequencies
- *q<sub>n</sub>* related to overlap integrals
- Matching scale is fitted, too



Jan Steinhoff (ZARM)

Bremen, June 20th, 2013 16 / 18

- Action principles for extended bodies
- 2 Applications
- 3 Tidal polarization beyond the adiabatic case
- 4 Conclusions

## Conclusions

Action principles for extended compact objects:

- Restricted, but applicable to many physical situations
- Simple compared to standard approaches
- Easy to identify conserved quantities  $\rightarrow$  solutions to EOM
- Straightforward to extend field content, e.g., include F<sup>μν</sup>

Future work on dynamic multipoles and tides:

- More realistic NS models: rotation, crust, ...
- Resonances with orbital motion
- Instabilities of modes, shattering of crust, connection to GRB, ...

#### Thank you for your attention

and special thanks to my collaborators

Sayan Chakrabarti Térence Delsate Dirk Puetzfeld Gerhard Schäfer

and for support by the German Research Foundation DFG