Analytic models for compact binaries spin and **dynamic tides**

Jan Steinhoff

in collaboration with Tanja Hinderer, Alessandra Buonanno, and Andrea Taracchini

Steinhoff etal, arXiv:1608.01907

Hinderer etal, PRL 116 (2016) 181101

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam-Golm, Germany

GR21, Party Space, Columbia University, New York, July 13th, 2016

Results for post-Newtonian approximation with spin

conservative part of the motion of the binary; see talk by Michele Levi on Monday

post-Newtonian (PN) approximation: expansion around $\frac{1}{c} \rightarrow 0$ (Newton)

order	<i>c</i> ⁰	c^{-1}	<i>c</i> ⁻²	<i>C</i> ⁻³	c^{-4}	c^{-5}	c^{-6}	c^{-7}	<i>C</i> ⁻⁸
	N		1PN		2PN		3PN		4PN
non spin	~		~		~		~		~
spin-orbit				~		~		1	
S ₁ ²					1		1		 Image: A second s
S_1S_2					1		1		~
Spin ³								✓ _(√)	
Spin ⁴									✓ _(√)
÷									·
~	kno	wn	(🗸)	partia		🖊 deri	ved las	t year	

Work by many people ("just" for the spin sector): Barker, Blanchet, Bohé, Buonanno, O'Connell, Damour, D'Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin, Poisson, Porter, Porto, Rothstein, Schäfer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya

Jan Steinhoff (AEI)

Analytic models for compact binaries

New York, July 13th, 2016 2 / 7

EFT program in classical gravity: Goldberger, Rothstein, PRD 73 (2006) 104029; ...

various zones \rightarrow separation of scales

scales continue down the star: \rightarrow fluid, nucleons, quarks, ?

The physics at "smaller" scales admits an Effective Field Theory (EFT) description!

Here: Effective theory for dynamical tides → dynamical, time-dependent response (of the inner zone to perturbations from the outer zone)

 \rightarrow harmonic oscillator effective theory for multipoles

EFT program in classical gravity: Goldberger, Rothstein, PRD 73 (2006) 104029; ...

various zones \rightarrow separation of scales

scales continue down the star: \rightarrow fluid, nucleons, quarks, ?

The physics at "smaller" scales admits an Effective Field Theory (EFT) description!

Here: Effective theory for dynamical tides → dynamical, time-dependent response (of the inner zone to perturbations from the outer zone)

 \rightarrow harmonic oscillator effective theory for multipoles

EFT program in classical gravity: Goldberger, Rothstein, PRD 73 (2006) 104029; ...

various zones \rightarrow separation of scales

scales continue down the star: \rightarrow fluid, nucleons, quarks, ?

The physics at "smaller" scales admits an Effective Field Theory (EFT) description!

Here: Effective theory for dynamical tides \rightarrow dynamical, time-dependent response

 \rightarrow harmonic oscillator effective theory for multipole

EFT program in classical gravity: Goldberger, Rothstein, PRD 73 (2006) 104029; ...

various zones \rightarrow separation of scales

scales continue down the star: \rightarrow fluid, nucleons, quarks, ?

The physics at "smaller" scales admits an Effective Field Theory (EFT) description!

Here: Effective theory for dynamical tides \rightarrow dynamical, time-dependent response

(of the inner zone to perturbations from the outer zone)

 \rightarrow harmonic oscillator effective theory for multipoles

EFT program in classical gravity: Goldberger, Rothstein, PRD 73 (2006) 104029; ...

various zones \rightarrow separation of scales

scales continue down the star: \rightarrow fluid, nucleons, quarks, ?

The physics at "smaller" scales admits an Effective Field Theory (EFT) description!

Here: Effective theory for dynamical tides \rightarrow dynamical, time-dependent response

(of the inner zone to perturbations from the outer zone)

 \rightarrow harmonic oscillator effective theory for multipoles

Their description through an effective action [JS, Hinderer, Taracchini, Buonanno, in preparation]

Relativistic effective Lagrangian for dynamical tides: $Q_{\mu\nu}u^{\nu} = 0$

$$L_{Q} = \frac{z}{4\lambda\omega_{f}^{2}} \left[\frac{1}{z^{2}} \frac{DQ_{\mu\nu}}{d\sigma} \frac{DQ^{\mu\nu}}{d\sigma} - \omega_{f}^{2} Q_{\mu\nu} Q^{\mu\nu} \right] - \frac{z}{2} E_{\mu\nu} Q^{\mu\nu} + \frac{z}{4} K E_{\mu\nu} E^{\mu\nu} + \dots$$
$$u^{\mu} = \frac{Dx^{\mu}}{d\sigma}, \qquad z = \sqrt{-u^{\mu}u_{\mu}} \quad \text{(is the redshift for } \sigma = t\text{)}$$

Newtonian case: [Flanagan, Hinderer, PRD 77 (2008) 021502]

- λ is the tidal deformability (Love number)
- identify ω_f with real part of quasi-normal-mode frequency
- K linked to (almost) completeness of modes: $K \approx 0$

 ω_f and K are not fixed by a matching, but by physical intuition!

Their description through an effective action [JS, Hinderer, Taracchini, Buonanno, in preparation]

Relativistic effective Lagrangian for dynamical tides: $Q_{\mu\nu}u^{\nu} = 0$

$$L_{Q} = \frac{z}{4\lambda\omega_{f}^{2}} \left[\frac{1}{z^{2}} \frac{DQ_{\mu\nu}}{d\sigma} \frac{DQ^{\mu\nu}}{d\sigma} - \omega_{f}^{2} Q_{\mu\nu} Q^{\mu\nu} \right] - \frac{z}{2} E_{\mu\nu} Q^{\mu\nu} + \frac{z}{4} K E_{\mu\nu} E^{\mu\nu} + \dots$$
$$u^{\mu} = \frac{Dx^{\mu}}{d\sigma}, \qquad z = \sqrt{-u^{\mu} u_{\mu}} \quad \text{(is the redshift for } \sigma = t\text{)}$$

- Newtonian case: [Flanagan, Hinderer, PRD 77 (2008) 021502]
- λ is the tidal deformability (Love number)
- identify ω_f with real part of quasi-normal-mode frequency
- *K* linked to (almost) completeness of modes: $K \approx 0$

 ω_f and K are not fixed by a matching, but by physical intuition!

Their description through an effective action [JS, Hinderer, Taracchini, Buonanno, in preparation]

Relativistic effective Lagrangian for dynamical tides: $Q_{\mu\nu}u^{\nu} = 0$

$$L_{Q} = \frac{z}{4\lambda\omega_{f}^{2}} \left[\frac{1}{z^{2}} \frac{DQ_{\mu\nu}}{d\sigma} \frac{DQ^{\mu\nu}}{d\sigma} - \omega_{f}^{2} Q_{\mu\nu} Q^{\mu\nu} \right] - \frac{z}{2} E_{\mu\nu} Q^{\mu\nu} + \frac{z}{4} K E_{\mu\nu} E^{\mu\nu} + \dots$$
$$u^{\mu} = \frac{Dx^{\mu}}{d\sigma}, \qquad z = \sqrt{-u^{\mu}u_{\mu}} \quad \text{(is the redshift for } \sigma = t\text{)}$$

- Newtonian case: [Flanagan, Hinderer, PRD 77 (2008) 021502]
- λ is the tidal deformability (Love number)
- identify ω_f with real part of quasi-normal-mode frequency
- K linked to (almost) completeness of modes: $K \approx 0$

 ω_f and K are not fixed by a matching, but by physical intuition!

Their description through an effective action [JS, Hinderer, Taracchini, Buonanno, in preparation]

Relativistic effective Lagrangian for dynamical tides: $Q_{\mu\nu}u^{\nu} = 0$

$$L_{Q} = \frac{z}{4\lambda\omega_{f}^{2}} \left[\frac{1}{z^{2}} \frac{DQ_{\mu\nu}}{d\sigma} \frac{DQ^{\mu\nu}}{d\sigma} - \omega_{f}^{2} Q_{\mu\nu} Q^{\mu\nu} \right] - \frac{z}{2} E_{\mu\nu} Q^{\mu\nu} + \frac{z}{4} K E_{\mu\nu} E^{\mu\nu} + \dots$$
$$u^{\mu} = \frac{Dx^{\mu}}{d\sigma}, \qquad z = \sqrt{-u^{\mu} u_{\mu}} \quad \text{(is the redshift for } \sigma = t\text{)}$$

- Newtonian case: [Flanagan, Hinderer, PRD 77 (2008) 021502]
- λ is the tidal deformability (Love number)
- identify ω_f with real part of quasi-normal-mode frequency
- K linked to (almost) completeness of modes: $K \approx 0$

 ω_f and *K* are not fixed by a matching, but by physical intuition!

What are the genuine relativistic effects?

- redshift effect
- gravitomagnetism
 - \rightarrow frame dragging effect
 - \sim Zeeman effect

Both effectively shift the resonance frequency ω_f

What are the genuine relativistic effects?

redshift effect

gravitomagnetism

 → frame dragging effect
 ∼ Zeeman effect

Both effectively shift the resonance frequency ω_f

What are the genuine relativistic effects?

- redshift effect
- gravitomagnetism

 → frame dragging effect
 ∠ Zeeman effect

Both effectively shift the resonance frequency ω_f

frame of the neutron star is dragged in the direction of the orbital motion

What are the genuine relativistic effects?

- redshift effect
- gravitomagnetism
 - \rightarrow frame dragging effect
 - \sim Zeeman effect

Both effectively shift the resonance frequency ω_f

frame of the neutron star is dragged in the direction of the orbital motion

Frame dragging interaction

tidal spin: $S_Q^{ij} = 4Q^{k[i}P^{j]k}$ generates infinitesimal rotations \rightarrow frame dragging

substitute $S^{ij} o S^{ij}_Q$ in known potentials! o lazy

The tidal driving force

tidal:
$$-\frac{1}{2}E_{\mu\nu}Q^{\mu\nu}$$
 vs. spin induced: $\frac{C_{\text{ES}^2}}{2m}E_{\mu\nu}S^{\mu}S^{\nu}$

again substitute: $C_{ ext{ES}^2}S^j S^j o -mQ^{ij}$ in S^2 known potentials

super lazy!!!

agrees with Vines, Flanagan, PD 88 (2013) 024046

Harder: implementation into effective-one-body, analyze various models, ...

Frame dragging interaction

tidal spin: $S_Q^{ij} = 4Q^{k[i}P^{j]k}$ generates infinitesimal rotations \rightarrow frame dragging

substitute $S^{ij}
ightarrow S^{ij}_{Q}$ in known potentials! ightarrow lazy

The tidal driving force

tidal:
$$-\frac{1}{2}E_{\mu\nu}Q^{\mu\nu}$$
 vs. spin induced: $\frac{C_{\text{ES}^2}}{2m}E_{\mu\nu}S^{\mu}S^{\nu}$

again substitute: $C_{ ext{ES}^2}S^j S^j o -mQ^{ij}$ in S^2 known potentials

super lazy!!!

agrees with Vines, Flanagan, PD 88 (2013) 024046

Harder: implementation into effective-one-body, analyze various models, ...

pics/lazy1

Frame dragging interaction

tidal spin: $S_Q^{ij} = 4Q^{k[i}P^{j]k}$ generates infinitesimal rotations \rightarrow frame dragging

substitute $\mathcal{S}^{ij}
ightarrow \mathcal{S}^{ij}_Q$ in known potentials!

The tidal driving force

tidal: $-\frac{1}{2}E_{\mu\nu}Q^{\mu\nu}$ vs. spin induced: $\frac{C_{ES^2}}{2m}E_{\mu\nu}S^{\mu}S^{\nu}$ again substitute: $C_{ES^2}S^iS^j \rightarrow -mQ^{ij}$ in S^2 known potentials

Harder: implementation into effective-one-body, analyze various models, ...

pics/lazy1	

 \rightarrow lazy

Analytic models for compact binaries

Frame dragging interaction

tidal spin: $S_Q^{ij} = 4Q^{k[i}P^{j]k}$ generates infinitesimal rotations \rightarrow frame dragging

substitute $S^{ij}
ightarrow S^{ij}_Q$ in known potentials! ightarrow lazy

The tidal driving force

tidal: $-\frac{1}{2}E_{\mu\nu}Q^{\mu\nu}$ vs. spin induced: $\frac{C_{ES^2}}{2m}E_{\mu\nu}S^{\mu}S^{\nu}$ again substitute: $C_{ES^2}S^jS^j \rightarrow -mQ^{jj}$ in S^2 known potentials super lazy!!! agrees with Vines, Flanagan, PD **88** (2013) 024046

Harder: implementation into effective-one-body, analyze various models, ...

pics/lazy2

Frame dragging interaction

tidal spin: $S_Q^{ij} = 4Q^{k[i}P^{j]k}$ generates infinitesimal rotations \rightarrow frame dragging

substitute $S^{ij}
ightarrow S^{ij}_Q$ in known potentials! ightarrow lazy

The tidal driving force

tidal: $-\frac{1}{2}E_{\mu\nu}Q^{\mu\nu}$ vs. spin induced: $\frac{C_{ES^2}}{2m}E_{\mu\nu}S^{\mu}S^{\nu}$ again substitute: $C_{ES^2}S^iS^j \rightarrow -mQ^{ij}$ in S^2 known potentials super lazy!!! agrees with Vines, Flanagan, PD **88** (2013) 024046

Harder: implementation into effective-one-body, analyze various models, ...

pics/lazy2

All you need is λ ! ?

Almost, need more coefficients linked to dynamical tides!

 $\lambda, \omega_f, K, \ldots$

Dynamical tides become important close to resonance with ω_f

Increase tidal effect by \sim 30%!

Dynamical tides are important for accurate waveform models

pics/allLove

All you need is λ ! ?

Almost, need more coefficients linked to dynamical tides!

 $\lambda, \omega_f, K, \ldots$

Dynamical tides become important close to resonance with ω_f

Increase tidal effect by $\sim 30\%!$

Hinderer etal, PRL **116** (2016) 181101 Bini, Damour, Faye, PRD **85** (2012) 124034 Bernuzzi, etal. PRL **114** (2015) 161103

Dynamical tides are important for accurate waveform models

All you need is λ ! ?

Almost, need more coefficients linked to dynamical tides!

 $\lambda, \omega_f, K, \ldots$

Dynamical tides become important close to resonance with ω_f

Increase tidal effect by $\sim 30\%!$

Hinderer etal, PRL **116** (2016) 181101 Bini, Damour, Faye, PRD **85** (2012) 124034 Bernuzzi, etal. PRL **114** (2015) 161103

Dynamical tides are important for accurate waveform models