QFT methods for gravitational wave astronomy application to spin effects and dynamic tides

Jan Steinhoff

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam-Golm, Germany

Fields and Strings Seminar, Humboldt University Berlin, June 1st, 2016

Outline

Introduction

- Spin and tidal effects
- Upcoming Observatories
- Common view on analytic description of binaries
- Effective field theory for compact objects in gravity

Spin effects

- Two Facts on Spin in Relativity
- Point Particle Action in General Relativity
- Post-Newtonian Approximation
- Spin and Gravitomagnetism
- Results for post-Newtonian approximation with spin (conservative)

Dynamical tides

- Neutron stars
- Neutron Star Equations of State
- Dynamical tides
- Convenient concept: response function
- Relativistic effects on dynamic tides

GW150914 a.k.a. The Event

peak strain 10^{-21} at ~ 1 Gly \Rightarrow strain 10^{-7} at 1 AU

3 M_{\odot} radiated in a fraction of a second \Rightarrow power > all stars in the visible universe

- black holes \rightarrow large spin
- strong precession
 - ightarrow tests of gravity
- o compute spin effects!

- black holes \rightarrow large spin
- strong precession
 - \rightarrow tests of gravity
- compute spin effects!

- black holes \rightarrow large spin
- strong precession
 - \rightarrow tests of gravity
- compute spin effects!

- black holes \rightarrow large spin
- strong precession
 - \rightarrow tests of gravity
- o compute spin effects!

tidal forces \leftrightarrow oscillation modes \Rightarrow resonances & dynamic tides!

neutron star model

- black holes \rightarrow large spin
- strong precession
 - \rightarrow tests of gravity
- o compute spin effects!

- black holes \rightarrow large spin
- strong precession
 - \rightarrow tests of gravity
- o compute spin effects!

- black holes \rightarrow large spin
- strong precession
 - \rightarrow tests of gravity
- o compute spin effects!

- black holes \rightarrow large spin
- strong precession
 - \rightarrow tests of gravity
- o compute spin effects!

Gravitational wave detectors:

pics/et

Gravitational wave detectors:

pics/et

Einstein Telescope

LIGO like detectors:

- Virgo (Italy)
- LIGO-India
- Kagra (Japan)

Gravitational wave detectors:

nicc/	<u>nt</u>
1111.57	— I.

Einstein Telescope

LIGO like detectors:

- Virgo (Italy)
- LIGO-India
- Kagra (Japan)

pics/lisa

eLISA space mission

Gravitational wave detectors:

pics/et	
Einstein Telescope	

LIGO like detectors:

- Virgo (Italy)
- LIGO-India
- Kagra (Japan)

Common view on analytic description of binaries

matching of zone, see, e.g., Ireland, etal, arXiv:1512.05650

\sim	00		n	00
	0.57	20		85

various zones:

- inner zone (IZ) around compact objects
- near zone (NZ) for the orbit
- far zone (FZ) for the waves

in between: buffer zones (BZ) for the matching

Problematic: different gauges in different zones from Ireland, etal, arXiv:1512.05650

Common view on analytic description of binaries

matching of zone, see, e.g., Ireland, etal, arXiv:1512.05650

\sim	00		n	00
	0.57	20		85

various zones:

- inner zone (IZ) around compact objects
- near zone (NZ) for the orbit
- far zone (FZ) for the waves

in between: buffer zones (BZ) for the matching

Problematic: different gauges in different zones from Ireland, etal, arXiv:1512.05650

Common view on analytic description of binaries

matching of zone, see, e.g., Ireland, etal, arXiv:1512.05650

\sim	00		n	00
	0.57	20		85

various zones:

- inner zone (IZ) around compact objects
- near zone (NZ) for the orbit
- far zone (FZ) for the waves

in between: buffer zones (BZ) for the matching

Problematic: different gauges in different zones

from Ireland, etal, arXiv:1512.05650

Effective field theory for compact objects in gravity

Goldberger, Rothstein, PRD 73 (2006) 104029; Goldberger, arXiv:hep-ph/0701129

pics/GRtower

zones \rightarrow scales

from Goldberger, arXiv:hep-ph/0701129

separation of scales:

- scale μ
- object size r_s
- orbital size r
- velocity v
 - \rightarrow frequency $\sim \frac{v}{r}$

effective action replaces buffer zones in traditional approach

Effective field theory for compact objects in gravity

Goldberger, Rothstein, PRD 73 (2006) 104029; Goldberger, arXiv:hep-ph/0701129

pics/GRtower

zones \rightarrow scales

from Goldberger, arXiv:hep-ph/0701129

separation of scales:

- scale μ
- object size r_s
- orbital size r
- velocity v
 - \rightarrow frequency $\sim \frac{v}{r}$

effective action replaces buffer zones in traditional approach

Outline

Introduction

- Spin and tidal effects
- Upcoming Observatories
- Common view on analytic description of binaries
- Effective field theory for compact objects in gravity

Spin effects

- Two Facts on Spin in Relativity
- Point Particle Action in General Relativity
- Post-Newtonian Approximation
- Spin and Gravitomagnetism
- Results for post-Newtonian approximation with spin (conservative)

Dynamical tides

- Neutron stars
- Neutron Star Equations of State
- Dynamical tides
- Convenient concept: response function
- Relativistic effects on dynamic tides

Two Facts on Spin in Relativity

1. Minimal Extension

- ring of radius R and mass M
- spin: S = RMV
- maximal velocity: V ≤ c
 ⇒ minimal extension:

$$R = rac{S}{MV} \ge rac{S}{Mc}$$

2. Center-of-mass

fast & heavy

- now moving with velocity v
- relativistic mass changes inhom.
- frame-dependent center-of-mass
- need spin supplementary condition:

e.g.,
$$S^{\mu
u}
ho_
u=0$$

Two Facts on Spin in Relativity

1. Minimal Extension

- ring of radius R and mass M
- spin: S = RMV
- maximal velocity: V ≤ c
 ⇒ minimal extension:

$$R = rac{S}{MV} \ge rac{S}{Mc}$$

2. Center-of-mass

fast & heavy

- now moving with velocity v
- relativistic mass changes inhom.
- frame-dependent center-of-mass
- need spin supplementary condition:

e.g.,
$$S^{\mu
u} p_
u = 0$$

Point Particle Action in General Relativity

Westpfahl (1969); Bailey, Israel (1975); Porto (2006); Levi & Steinhoff (2014)

$$S_{\mathsf{PP}} = \int d\sigma \left[-m \sqrt{g_{\mu
u} u^{\mu} u^{
u}} + \dots \right]$$

Legendre transformation in U^{μ} (from Nambu-Goto to Polyakov action)

$$S_{ ext{PP}} = \int d\sigma \left[
ho_{\mu} rac{D z^{\mu}}{d\sigma} - rac{\lambda}{2} \mathcal{H} + rac{1}{2} S_{\mu
u} \wedge_{A}{}^{\mu} rac{D \wedge^{A
u}}{d\sigma} - rac{
ho_{\mu} S^{\mu
u}}{
ho_{
ho}
ho^{
ho}} rac{D
ho_{
u}}{d\sigma} - \chi^{\mu} \mathcal{C}_{\mu}
ight]$$

• constraint, interactions in \mathcal{M} : $\mathcal{H} := p_{\mu}p^{\mu} + \mathcal{M}^2 = 0$ mass-shell constraint • $\Lambda_{A}{}^{\mu}$: frame field on the worldline, "body-fixed" frame

Action is invariant under a "spin gauge symmetry":

• spin gauge constraint: $\mathcal{C}_{\mu}:=\mathcal{S}_{\mu
u}(p^{
u}+p\Lambda_{0}{}^{\mu})$ ~ enerator of symmetry

- action invariant under a boost of $\Lambda_A{}^\mu$ plus transformation of $S^{\mu
 u}$
- gauge related choice of center \rightarrow spin supplementary condition

Point Particle Action in General Relativity

Westpfahl (1969); Bailey, Israel (1975); Porto (2006); Levi & Steinhoff (2014)

$$S_{\mathsf{PP}} = \int d\sigma \left[-m \sqrt{g_{\mu
u} u^{\mu} u^{
u}} + \dots \right]$$

Legendre transformation in U^{μ} (from Nambu-Goto to Polyakov action)

$$S_{ ext{PP}} = \int d\sigma \left[
ho_{\mu} rac{D z^{\mu}}{d\sigma} - rac{\lambda}{2} \mathcal{H} + rac{1}{2} S_{\mu
u} \Lambda_{A}^{\mu} rac{D \Lambda^{A
u}}{d\sigma} - rac{
ho_{\mu} S^{\mu
u}}{
ho_{
ho} p^{
ho}} rac{D
ho_{
u}}{d\sigma} - \chi^{\mu} \mathcal{C}_{\mu}
ight]$$

- constraint, interactions in \mathcal{M} : $\mathcal{H} := p_{\mu}p^{\mu} + \mathcal{M}^2 = 0$ mass-shell constraint
- Λ_A^{μ} : frame field on the worldline, "body-fixed" frame

Action is invariant under a "spin gauge symmetry":

• spin gauge constraint: $\mathcal{C}_{\mu}:=S_{\mu
u}(p^{
u}+p\Lambda_{0}{}^{\mu})$ ~ enerator of symmetry

- action invariant under a boost of $\Lambda_A{}^\mu$ plus transformation of $S^{\mu
 u}$
- gauge related choice of center \rightarrow spin supplementary condition

Point Particle Action in General Relativity

Westpfahl (1969); Bailey, Israel (1975); Porto (2006); Levi & Steinhoff (2014)

$$S_{\mathsf{PP}} = \int d\sigma \left[-m \sqrt{g_{\mu
u} u^{\mu} u^{
u}} + ...
ight]$$

Legendre transformation in U^{μ} (from Nambu-Goto to Polyakov action)

$$S_{ ext{PP}} = \int d\sigma \left[
ho_{\mu} rac{D z^{\mu}}{d\sigma} - rac{\lambda}{2} \mathcal{H} + rac{1}{2} S_{\mu
u} \Lambda_{A}^{\mu} rac{D \Lambda^{A
u}}{d\sigma} - rac{
ho_{\mu} S^{\mu
u}}{
ho_{
ho}
ho^{
ho}} rac{D
ho_{
u}}{d\sigma} - \chi^{\mu} \mathcal{C}_{\mu}
ight]$$

- constraint, interactions in \mathcal{M} : $\mathcal{H}:=p_{\mu}p^{\mu}+\mathcal{M}^{2}=0$ mass-shell constraint
- Λ_A^{μ} : frame field on the worldline, "body-fixed" frame

Action is invariant under a "spin gauge symmetry":

- spin gauge constraint: $\mathcal{C}_{\mu} := \mathcal{S}_{\mu
 u}(p^{
 u} + p\Lambda_0^{\mu}) \quad \sim$ generator of symmetry
- action invariant under a boost of $\Lambda_A{}^\mu$ plus transformation of $S^{\mu
 u}$
- gauge related choice of center \rightarrow spin supplementary condition

Application: post-Newtonian approximation

- for bound orbits
- one expansion parameter, $\epsilon_{PN} \sim \frac{v^2}{c^2} \sim \frac{GM}{c^2 r} \ll 1$ (weak field & slow motion)
- propagation "almost" instantaneous
- time dependence of metric $g_{\mu\nu}$ treated perturbatively
- \rightarrow Kaluza-Klein decomposition useful [Kol, Smolkin, arXiv:0712.4116]

$$ds^2 = g_{\mu
u}dx^\mu dx^
u \equiv e^{2\phi}(dt - A_i dx^i)^2 - e^{-2\phi}\gamma_{ij}dx^i dx^j$$

- ϕ : gravito-electric field
- A_i : gravito-magnetic field
- γ_{ij} : spin-2 field

Post-Newtonian Approximation

Application: post-Newtonian approximation

- for bound orbits
- one expansion parameter, $\epsilon_{PN} \sim \frac{v^2}{c^2} \sim \frac{GM}{c^2 r} \ll 1$ (weak field & slow motion)
- propagation "almost" instantaneous
- time dependence of metric g_{μν} treated perturbatively

Kaluza-Klein decomposition useful [Kol, Smolkin, arXiv:0712.4116]

$$ds^2=g_{\mu
u}dx^\mu dx^
u\equiv e^{2\phi}(dt-A_idx^i)^2-e^{-2\phi}\gamma_{ij}dx^i dx^j$$

- ϕ : gravito-electric field
- A_i : gravito-magnetic field
- γ_{ij} : spin-2 field

Post-Newtonian Approximation

Application: post-Newtonian approximation

- for bound orbits
- one expansion parameter, $\epsilon_{PN} \sim \frac{v^2}{c^2} \sim \frac{GM}{c^2 r} \ll 1$ (weak field & slow motion)
- propagation "almost" instantaneous
- time dependence of metric g_{μν} treated perturbatively
- → Kaluza-Klein decomposition useful [Kol, Smolkin, arXiv:0712.4116]

$$ds^2 = g_{\mu
u}dx^\mu dx^
u \equiv e^{2\phi}(dt - A_i dx^i)^2 - e^{-2\phi}\gamma_{ij}dx^i dx^j$$

- ϕ : gravito-electric field
- A_i : gravito-magnetic field
- γ_{ij} : spin-2 field

Application: post-Newtonian approximation

- for bound orbits
- one expansion parameter, $\epsilon_{PN} \sim \frac{v^2}{c^2} \sim \frac{GM}{c^2 r} \ll 1$ (weak field & slow motion)
- propagation "almost" instantaneous
- time dependence of metric g_{μν} treated perturbatively
- → Kaluza-Klein decomposition useful [Kol, Smolkin, arXiv:0712.4116]

$$ds^2 = g_{\mu
u}dx^\mu dx^
u \equiv e^{2\phi}(dt - A_i dx^i)^2 - e^{-2\phi}\gamma_{ij}dx^i dx^j$$

- ϕ : gravito-electric field
- A_i : gravito-magnetic field
- γ_{ij} : spin-2 field

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$\frac{1}{2}S_{\mu\nu}\Lambda_{A}^{\mu}\frac{\mathsf{D}\Lambda^{A\nu}}{d\sigma} \rightsquigarrow \frac{1}{2}S^{ij}\partial_{i}A_{j}$$

- Here: $r_{12} = |\vec{x}_1 \vec{x}_2|$
- Feynman rules see e.g. [arXiv:1501.04956]

 $L_{S_1S_2} = \frac{1}{2} S_1^{ki} \left\langle \partial_k A_i \partial_\ell A_j \right\rangle \frac{1}{2} S_2^{\ell j}$ $=\frac{1}{2}S_{1}^{ki}\frac{1}{2}S_{2}^{\ell j}\delta_{ij}(-16\pi G)\frac{\partial}{\partial x_{1}^{k}\partial x_{2}^{\ell}}\int\frac{dk}{(2\pi)^{3}}\frac{e^{i\vec{k}(\vec{x_{1}}-\vec{x_{2}})}}{\vec{\iota}_{2}}$

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$rac{1}{2}S_{\mu
u}\Lambda_{A}^{\mu}rac{\mathsf{D}\Lambda^{A
u}}{d\sigma}
ightarrow rac{1}{2}S^{ij}\partial_{i}A_{j}$$

• Here:
$$r_{12} = |\vec{x}_1 - \vec{x}_2|$$

- Feynman rules see e.g. [arXiv:1501.04956]

 $L_{S_1S_2} = \frac{1}{2} S_1^{ki} \left\langle \partial_k A_i \partial_\ell A_j \right\rangle \frac{1}{2} S_2^{\ell j}$ $=\frac{1}{2}S_{1}^{ki}\frac{1}{2}S_{2}^{\ell j}\,\delta_{ij}(-16\pi G)\frac{\partial}{\partial x_{+}^{k}\partial x_{-}^{\ell}}\,\int\frac{dk}{(2\pi)^{3}}\frac{e^{i\vec{k}(\vec{x_{1}}-\vec{x_{2}})}}{\vec{k_{2}}}$

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$\frac{1}{2}S_{\mu\nu}\Lambda_{A}^{\mu}\frac{\mathsf{D}\Lambda^{A\nu}}{d\sigma} \rightsquigarrow \frac{1}{2}S^{ij}\partial_{i}A_{j}$$

• Here:
$$r_{12} = |\vec{x}_1 - \vec{x}_2|$$

 $L_{S_1S_2} = \frac{1}{2} S_1^{ki} \left\langle \partial_k A_i \partial_\ell A_j \right\rangle \frac{1}{2} S_2^{\ell j}$ $=\frac{1}{2}S_{1}^{ki}\frac{1}{2}S_{2}^{\ell j}\delta_{ij}(-16\pi G)\frac{\partial}{\partial x_{1}^{k}\partial x_{2}^{\ell}}\int\frac{dk}{(2\pi)^{3}}\frac{e^{i\vec{k}(\vec{x_{1}}-\vec{x_{2}})}}{\vec{k}^{2}}$

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$\frac{1}{2}S_{\mu\nu}\Lambda_{A}^{\mu}\frac{\mathsf{D}\Lambda^{A\nu}}{d\sigma} \rightsquigarrow \frac{1}{2}S^{ij}\partial_{i}A_{j}$$

 $L_{S_1S_2} = \frac{1}{2} S_1^{ki} \left\langle \partial_k A_i \partial_\ell A_j \right\rangle \frac{1}{2} S_2^{\ell j}$ $=\frac{1}{2}S_{1}^{ki}\frac{1}{2}S_{2}^{\ell j}\,\delta_{ij}(-16\pi G)\frac{\partial}{\partial x_{1}^{k}\partial x_{2}^{\ell}}\int\frac{dk}{(2\pi)^{3}}\frac{e^{i\vec{k}(\vec{x_{1}}-\vec{x_{2}})}}{\vec{k}^{2}}$

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$rac{1}{2}S_{\mu
u}\Lambda_{A}^{\mu}rac{\mathsf{D}\Lambda^{A
u}}{d\sigma}
ightarrow rac{1}{2}S^{ij}\partial_{i}A_{j}$$

$$\begin{split} L_{S_1 S_2} &= \frac{1}{2} S_1^{ki} \left\langle \partial_k A_i \; \partial_\ell A_j \right\rangle \frac{1}{2} S_2^{\ell j} \\ &= \frac{1}{2} S_1^{ki} \; \frac{1}{2} S_2^{\ell j} \; \delta_{ij} (-16\pi G) \frac{\partial}{\partial x_1^k \partial x_2^\ell} \int \frac{dk}{(2\pi)^3} \frac{e^{i\vec{k}(\vec{x_1} - \vec{x_2})}}{\vec{k}^2} \\ &= -G S_1^{ki} S_2^{\ell i} \frac{\partial}{\partial x_1^k \partial x_2^\ell} \left(\frac{1}{r_{12}}\right) \end{split}$$

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$rac{1}{2}S_{\mu
u}\Lambda_{A}^{\mu}rac{\mathsf{D}\Lambda^{A
u}}{d\sigma}
ightarrow rac{1}{2}S^{ij}\partial_{i}A_{j}$$

$$S_1 \xrightarrow{A_i \quad A_j} S_2$$

.

• Here:
$$r_{12} = |\vec{x}_1 - \vec{x}_2|$$

- Ignoring factors like $\delta(t_1 t_2)$
- Feynman rules see e.g. [arXiv:1501.04956]
- Status: NNLO (many more diagrams, loops)

$$\begin{split} L_{S_1 S_2} &= \frac{1}{2} S_1^{ki} \left\langle \partial_k A_i \; \partial_\ell A_j \right\rangle \frac{1}{2} S_2^{\ell j} \\ &= \frac{1}{2} S_1^{ki} \; \frac{1}{2} S_2^{\ell j} \; \delta_{ij} (-16\pi G) \frac{\partial}{\partial x_1^k \partial x_2^\ell} \int \frac{dk}{(2\pi)^3} \frac{e^{i\vec{k}(\vec{x_1} - \vec{x_2})}}{\vec{k}^2} \\ &= -G S_1^{ki} S_2^{\ell i} \frac{\partial}{\partial x_1^k \partial x_2^\ell} \left(\frac{1}{r_{12}}\right) \end{split}$$

Results for post-Newtonian approximation with spin

conservative part of the motion of the binary

post-Newtonian (PN) approximation: expansion around $\frac{1}{c} \rightarrow 0$ (Newton)									
order	$ c^0 $	c^{-1}	<i>c</i> ⁻²	<i>c</i> ⁻³	c^{-4}	c^{-5}	<i>C</i> ⁻⁶	c^{-7}	<i>c</i> ⁻⁸
	N		1PN		2PN		3PN		4PN
non spin	~		1		1		~		~
spin-orbit				~		~		~	
S ₁ ²					1		1		 Image: A second s
S_1S_2					1		~		~
Spin ³								✓ _(√)	
Spin ⁴									✓ _(√)
÷									·
1	kno	wn	(🗸)	partia		🖊 deri	ved last	t year	

Work by many people ("just" for the spin sector): Barker, Blanchet, Bohé, Buonanno, O'Connell, Damour, D'Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin, Poisson, Porter, Porto, Rothstein, Schäfer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya

Jan Steinhoff (AEI)

QFT methods for gravitational wave astronomy

HU Berlin, June 1st, 2016 12 / 19

Outline

Introduction

- Spin and tidal effects
- Upcoming Observatories
- Common view on analytic description of binaries
- Effective field theory for compact objects in gravity

Spin effects

- Two Facts on Spin in Relativity
- Point Particle Action in General Relativity
- Post-Newtonian Approximation
- Spin and Gravitomagnetism
- Results for post-Newtonian approximation with spin (conservative)

Dynamical tides

- Neutron stars
- Neutron Star Equations of State
- Oynamical tides
- Convenient concept: response function
- Relativistic effects on dynamic tides

A neutron star model

pics/neutronstar

Neutron star picture by D. Page

www.astroscu.unam.mx/neutrones/

"Lab" for various areas in physics

- magnetic field, plasma
- crust (solid state)
- superfluidity
- superconductivity
- unknown matter in core condensate of quarks, hyperons, kaons, pions, ...?

accumulation of dark matter ?

Related objects:

- pulsars
- magnetars
- quark stars/strange stars

A neutron star model

pics/neutronstar

Neutron star picture by D. Page

www.astroscu.unam.mx/neutrones/

"Lab" for various areas in physics

- magnetic field, plasma
- orust (solid state)
- superfluidity
- superconductivity
- unknown matter in core condensate of quarks, hyperons, kaons, pions, ...?

accumulation of dark matter ?

Related objects:

- o pulsars
- magnetars
- quark stars/strange stars

A neutron star model

pics/neutronstar

Neutron star picture by D. Page

www.astroscu.unam.mx/neutrones/

"Lab" for various areas in physics

- magnetic field, plasma
- orust (solid state)
- superfluidity
- superconductivity
- unknown matter in core condensate of quarks, hyperons, kaons, pions, ...?

accumulation of dark matter ?

Related objects:

- pulsars
- magnetars
- quark stars/strange stars

pics/NSMassRad

mpifr-bonn.mpg.de

However, a measurement of the tidal deformations through gravitational waves can be a good alternative to radius measurements.

mpifr-bonn.mpg.de

JS etal, in preparation Hinderer etal, PRL 116 (2016) 181101 (Research Highlight in Nature)

• Neutron stars can oscillate \rightarrow effective harmonic oscillator action

$$L_{\text{tide}} \sim \frac{DA^{\mu\nu}}{d\sigma} \frac{DA_{\mu\nu}}{d\sigma} - \omega_0^2 A^{\mu\nu} A^{\mu\nu} - \frac{l_0}{2} A^{\mu\nu} E_{\mu\nu} + \frac{K}{4} E^{\mu\nu} E_{\mu\nu} + \dots$$
(electric) tidal field $E_{\mu\nu} = R_{\alpha\mu\beta\nu} u^{\alpha} u^{\beta}$

• Amplitude $A^{\mu\nu}$ must be SO(3) irreducuble, i.e, symmetric-tracefree:

$$A^{[\mu\nu]} = 0 = A^{\mu}{}_{\mu}, \qquad A^{\mu\nu} u_{\nu} = 0$$

- Here: quadrupolar amplitude, strongly couples to gravity
- More oscillators in the action → more modes → spectrum
- In Newtonian limit: easy to compute constants ω_0 , I_0 , K, ...

How to get these constants in relativistic case? \rightarrow matching

Other important references: Hinderer, ApJ 677 (2008) 1216 Alexander, MNRAS 227 (1987) 843

JS etal, in preparation Hinderer etal, PRL 116 (2016) 181101 (Research Highlight in Nature)

• Neutron stars can oscillate \rightarrow effective harmonic oscillator action

$$L_{\text{tide}} \sim \frac{DA^{\mu\nu}}{d\sigma} \frac{DA_{\mu\nu}}{d\sigma} - \omega_0^2 A^{\mu\nu} A^{\mu\nu} - \frac{l_0}{2} A^{\mu\nu} E_{\mu\nu} + \frac{K}{4} E^{\mu\nu} E_{\mu\nu} + \dots$$
(electric) tidal field $E_{\mu\nu} = R_{\alpha\mu\beta\nu} u^{\alpha} u^{\beta}$

• Amplitude $A^{\mu\nu}$ must be SO(3) irreducuble, i.e, symmetric-tracefree:

$$A^{[\mu
u]} = 0 = A^{\mu}{}_{\mu}, \qquad A^{\mu
u} u_{
u} = 0$$

- Here: quadrupolar amplitude, strongly couples to gravity
- More oscillators in the action \rightarrow more modes \rightarrow spectrum
- In Newtonian limit: easy to compute constants ω_0 , I_0 , K, ...

How to get these constants in relativistic case? \rightarrow matching

Other important references: Hinderer, ApJ 677 (2008) 1216 Alexander, MNRAS 227 (1987) 843

JS etal, in preparation Hinderer etal, PRL 116 (2016) 181101 (Research Highlight in Nature)

• Neutron stars can oscillate \rightarrow effective harmonic oscillator action

$$L_{\text{tide}} \sim \frac{DA^{\mu\nu}}{d\sigma} \frac{DA_{\mu\nu}}{d\sigma} - \omega_0^2 A^{\mu\nu} A^{\mu\nu} - \frac{l_0}{2} A^{\mu\nu} E_{\mu\nu} + \frac{K}{4} E^{\mu\nu} E_{\mu\nu} + \dots$$
(electric) tidal field $E_{\mu\nu} = R_{\alpha\mu\beta\nu} u^{\alpha} u^{\beta}$

• Amplitude $A^{\mu\nu}$ must be SO(3) irreducuble, i.e, symmetric-tracefree:

$$A^{[\mu\nu]} = 0 = A^{\mu}{}_{\mu}, \qquad A^{\mu\nu} u_{\nu} = 0$$

- Here: quadrupolar amplitude, strongly couples to gravity
- More oscillators in the action → more modes → spectrum

• In Newtonian limit: easy to compute constants ω_0 , I_0 , K, ...

How to get these constants in relativistic case? \rightarrow matching

Other important references: Hinderer, ApJ 677 (2008) 1216 Alexander, MNRAS 227 (1987) 843

JS etal, in preparation Hinderer etal, PRL 116 (2016) 181101 (Research Highlight in Nature)

• Neutron stars can oscillate \rightarrow effective harmonic oscillator action

$$L_{\text{tide}} \sim \frac{DA^{\mu\nu}}{d\sigma} \frac{DA_{\mu\nu}}{d\sigma} - \omega_0^2 A^{\mu\nu} A^{\mu\nu} - \frac{l_0}{2} A^{\mu\nu} E_{\mu\nu} + \frac{K}{4} E^{\mu\nu} E_{\mu\nu} + \dots$$
(electric) tidal field $E_{\mu\nu} = R_{\alpha\mu\beta\nu} u^{\alpha} u^{\beta}$

• Amplitude $A^{\mu\nu}$ must be SO(3) irreducuble, i.e, symmetric-tracefree:

$$A^{[\mu
u]} = 0 = A^{\mu}{}_{\mu}, \qquad A^{\mu
u} u_{
u} = 0$$

- Here: quadrupolar amplitude, strongly couples to gravity
- More oscillators in the action \rightarrow more modes \rightarrow spectrum
- In Newtonian limit: easy to compute constants ω_0 , I_0 , K, ...

How to get these constants in relativistic case? \rightarrow matching

Other important references: Hinderer, ApJ 677 (2008) 1216 Alexander, MNRAS 227 (1987) 843

Convenient concept: response function

Chakrabarti, Delsate, Steinhoff, PRD 88 (2013) 084038 and arXiv:1304.2228

quadrupolar sector: $\ell = 2$

external quadrupolar field $\phi \sim r^{\ell} \sum {}_2F_1$

 \longrightarrow deformation \longrightarrow

quadrupolar response $\phi \sim r^{-\ell-1} \sum {}_2F_1$

quadrupolar response fit:

poles \Rightarrow resonances!

$$F \approx \sum_{n} \frac{I_n^2}{\omega_n^2 - \omega^2}$$

 ω_n : mode frequency I_n : coupling constant R: radius

Convenient concept: response function

Chakrabarti, Delsate, Steinhoff, PRD 88 (2013) 084038 and arXiv:1304.2228

quadrupolar sector: $\ell = 2$

Convenient concept: response function

Chakrabarti, Delsate, Steinhoff, PRD 88 (2013) 084038 and arXiv:1304.2228

quadrupolar sector: $\ell = 2$

All that was said hold also in Newtonian gravity ...

What is new in the relativistic case?

- values of constants ω₀, *I*₀, *K*, ... is different
- Newtonian: K = 0relativistic $K \neq 0$
- redshift effect
- frame dragging effect ~ Zeeman effect

All that was said hold also in Newtonian gravity ...

What is new in the relativistic case?

- values of constants ω₀, *I*₀, *K*, ... is different
- Newtonian: K = 0relativistic $K \neq 0$
- redshift effect
- frame dragging effect
 Zeeman effect

All that was said hold also in Newtonian gravity ...

What is new in the relativistic case?

- values of constants ω₀, *I*₀, *K*, ... is different
- Newtonian: K = 0relativistic $K \neq 0$
- redshift effect
- frame dragging effect
 Zeeman effect

All that was said hold also in Newtonian gravity ...

What is new in the relativistic case?

- values of constants ω₀, *I*₀, *K*, ... is different
- Newtonian: K = 0relativistic $K \neq 0$
- redshift effect
- frame dragging effect ~ Zeeman effect

frame of the neutron star is dragged in the direction of the orbital motion

Summary

- black holes \rightarrow large spins
 - \rightarrow strong gravitomagnetic effects
 - \rightarrow interesting/new tests of gravity
- NS structure largely unknown/mysterious
 - \rightarrow tidal effects in gravitational waves and electromagnetic counterparts can enlighten nuclear interactions

GW astronomy exciting new and interdisciplinary field

- important to use common language → effective field theory
- but need to go a bit beyond standard techniques
 e.g., in-in formalism, see [Galley PRL 110, 174301 (2013)]
- "good" level of abstraction:

DeWitt, The Global Approach to Quantum Field Theory