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The post-Newtonian (PN) Approximation

of general relativity (GR)

Newtonian limit: slow motion and weak field limit of GR
PN approximation: expansion around Newtonian limit
Bound binary: Virial theorem

2(kinetic energy); = —(potential energy);

2 . ,
v: GM  dimensionless
c? c2r  expansion parameter

one PN order = ¢—2
half orders = ¢~ « antisymmetry under time-reversal = radiation
Assumption on T#¥: “strength” decreases as T ~ T0 ~ T

Robject

Source T*” approximated by multipoles, parameter ~
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@ Taylor series of Fourier-transformed charge density p:
p(k) = (q +ig'ki + %izq"’k,-k,- + ) (2r)~3/2
@ In position space:
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Electrostatic Multipoles

@ Taylor series of Fourier-transformed charge density p:
p(k) = (q +ig'ki + %izq"’k,-k,- + ) (2r)~3/2
@ In position space:

, 1 .
p(X) = <C] —q'o+ Eq’fa,-aj — ) 5(x)
6(X) & (2m)7%2 9 —ik;

@ The potential ¢ reads:

. 1. 1
¢ = 7471'A71p = (q -q'0;+ Eq’/a,-a,- — )

x|

@ Electric monopole, dipole, and quadrupole: g, ¢/, ¥
@ Multipole approximation breaks down for big |k| or small x| (~ Ropject)

@ Self-energy UV-divergent: [ p¢ ~ %
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Gravitational Multipoles

and the PN approximation beyond point-masses

1

v)pPa 2 v
+ §Raﬂp(w IS 4y — 3 (V704 gy T
az* o o
Ul" = 7d7— 6(4) = 5(X — Z )

@ Point masses only distinguished by a mass m = \/—p,.p”

@ Adding a dipole: Spin

@ Higher multipoles: Quadrupole, octupole, ... (“finite size effects”)
@ Dimensional regularization required for self-gravitating objects
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Two Facts on Spin in Relativity

1. Minimal Extension 2. Center-of-mass

——

%
@ ring of radius R and mass M @ now moving with velocity v
@ spin. S=RMV @ relativistic mass changes inhom.
@ maximal velocity: V < ¢ @ frame-dependent center-of-mass
= minimal extension: @ need spin supplementary condition,
S S

R S*p, =0

=MV = Me €9
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Dipole/Spin

Angular Velocity and Spin

in Newtonian mechanics and special relativity

Newton special relativity
body-fixed frame Xt = Nix/
rotational degrees of freedom ~ AKAN = g nagN*¥NBY = nrv
— supplementary condition Niyp* =0
" dAK NAV
Angular Velocity i = N g AA"d
dt dr
. , oL oL
Spin (L: Lagrangian) Sj= ZW S = ZW
— supplementary condition Sup’ =0

Remark:

@ Angular velocity vector is Q' = Jej Q. Analogous for spin.
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Spin Action in GR

@ Minimal coupling:

ar

1
L=me\/—u,ur+ 55,09" + ..
N—— 2

¢ ~ 1Si0A
2 17

@ m=~ m; = const

@ Valid to linear order in spin

@ Gravito-magnetic field A; = —gjo
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Spin Action in GR

@ Minimal coupling:

ar

1 v
L=my\/—u,u*+ §SWQ” + ..
v N———
u M%S”Q,Aj

@ m=~ m; = const
@ Valid to linear order in spin
@ Gravito-magnetic field A; = —gjo
@ Metric variation problematic:

AA,uAAu = guy A Yu Vv + TV = 2guu

Variate A2 and tetrad e, €2.6% = Qv M, = NMag,,

NNy =16 < Yab + VY2 = 2Nab
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Sifp-—--------—- Sy @ We will calculate the leading-order
S¢S, potential

1 1 @ Here: §; = 6(X — 24), ra = |X — 23]
/ ol"’xésffak(s1 167Go;A~" ésga,az

- / Px L S04, (~2)GSLo, (1)
2 I

GS{ Shoko, (:)
3

X=Z4



Dipole/Spin
[ ]

Spin and Gravitomagnetism

1 . ] 1
/dSX 534(/(3;(01 167TG(5,'/‘A71 5838,52

_ / Px L S04, (~2)GSLo, (1)
2 I

. 1
1

X=Z4

@ We will calculate the leading-order
S¢S, potential

@ Here: 6, = 8(X — 2,), ra = |[X — 24]
@ Diagrams encode integrals

@ Translation rules: Feynman rules
see e.g. Levi arXiv:1006.4139

@ Rules follow from the action
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Spin and Gravitomagnetism

Sifp-—--------—- Sy @ We will calculate the leading-order
S¢S, potential

@ Here: §; = 6(X — 24), ra = |X — 23]
/dGX %Sé(/()k51 167TG($UA71 %Sgal(sz o Dlagrams encode Integra|S
@ Translation rules: Feynman rules
= /dsx 131«'3,(51 (—2)GSlo, (1) see e.g. Levi arXiv:1006.4139
2 )

1 @ Rules follow from the action
= GSY¥Shoyo, (r>
)

X=Z4

Relevance of T, T T revised

N mass T% ~ gravito-electric field
1PN flow 70~ gravito-magnetic field (A;)
2PN stress T/~ 3-dim. tensor field
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Quadrupole Deformation due to Spin

for neutron stars, Laarakkers, Poisson gr-qc/9709033

@ Here m=1.4M, asf
@ Dim.-less mass quadrupole: q 30
@ Dim.-less spin: y 22 o
@ Quadratic fit is extremely good: i 150 ‘rs |
10F 1
—q ~ CgseX® ost G |
@ Cps» = 4.3...7.4, EOS dependent 0'0(1(; 01 02 03 04 05 06 07
@ Also depends on mass X

see Laarakkers, Poisson gr-qc/9709033

@ For black holes Cgse = 1
@ S*-quadrupole is highly suppressed
@ RNS code by N. Stergioulas publicly available
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°

Tidal Quadrupole Deformation
for neutron stars, e.g. Damour, Nagar arXiv:0906.0096, Binnington, Poisson arXiv:0906.1366

@ Linear NS perturbation, thus:

0.10
—Q=E 0.08
@ Tidal force E (curvature) o 006
@ Dim.-less 2nd Love number ko: ) 0.04
3 12 0.02

2T 2R 000k, ‘ ‘ ‘ ‘ ]

0.05 0.10 0.15 0.20 0.25 0.30

Gm c
@ Compactness ¢ = -3

see Damour, Nagar arXiv:0906.0096

@ For certain realistic EOS it holds k» ~ 0.17 — 0.52¢
@ For black holes k> ~ 0
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Quadrupole Action
see e.g. Porto, Rothstein arXiv:0804.0260, Goldberger, Rothstein hep-th/0511133

1 CESZ
L = —B,,S"u,S
quad = T, 1 DS B + 2meu

SSC preserving deformation due to spin  tidal deformation

vV N2 v
E..S".S +4—USE,WE# + ...

E., ~ Ruapu®u® B, ~ Y€upapRiePuru’ St =1 Pu, S, 4

@ mg, Cege, and up: constants, matched to single object
@ Now: me # m
@ From Bailey, Israel (1975):

JNVO‘B _ _6 aL
OR,vap

@ Covariant mass quadrupole: (foru=1)
oL Cge

mass quadrupole ~ 2

08 4 g EMY
9E,, ~ me t+h2
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Canonical Methods
°

Surface Terms and ADM Hamiltonian
ADM = Arnowitt, Deser, Misner

@ Einstein—Hilbert action plus York—Gibbons—Hawking surface term:

4 3
Stield = 167 G/d v—9R - 16 Gj{d yZ\fK

@ ADM energy given by surface integral

1 2
Epom = 167G y{d Silvij — il
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Canonical Methods
°

Canonical Variables to Linear Order in Spin

@ Flat spacetime: Newton-Wigner center and spin are canonical
@ Canonical 2/, S, and A are “simple” generalizations of flat space case
@ Canonical matter momentum p;:

R
pi=Bi+ 58+

cf. electrodynamics: pi = pi — qA;

@ Canonical field momentum #¥TT has delta-corrections:

TT _ A§TT o ImcTTif ¢

can not be given in closed form explicitly
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°

PN Counting with Spin

for Hamiltonians

GmPx
c

for maximally rotating objects: S = x=1

order 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5

AN

PM + HIPN L 2PN | 25PN | LBPN | pBSPN  [aPN 45PN

SO hHS 4 HE MO Mg

St + HP + HyO + HYEO + HPT

sis: PR MR M Y

spin® + HP + HMLO
spin* + HYP

Hknown  EOM known  for Black Holes  not known (yet)

Radiation field known to 2.5PN order, multipoles to 3PN order.
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°

Results for Spin Hamiltonians

shown for equal masses, circular orbits, and aligned spins

Hspin = HS1O + HSZO =+ HS? + HS% + HS132 + Hss =+ HS“ 4+ ...

LO NLO N2LO
Heo=SiLd L 3 1+5L2 P 4017@Lji§5‘+
SO ™ =183 4 16 r | ' 64r5 8 r 16r2| "
Ces 17Cree — 11 L2
_ 2 ES ES
HS? = 81 {— 8r3 +16I’4 |:6CE32 5 — 4r:| + }
1 1 7L2 1 L2 45 L4
5L
Hgs = a7 5(S1 +S)% + ... yet only known
3
Hge = 128r5(81 +S)* + ... for black holes
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Spin-Orbit: Gyro-Gravitomagnetic Ratios g5°8 + gE°OB

for equal masses and circular orbits, A. Nagar arXiv:1106.4349

3.5
@ 30r
s [ W LO contribution
+ | M contributions to NLO
ol . B contributions to N?LO
won
o 25}
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 )




Conclusions & Outlook

Conclusions:
@ Spin (linear order): universal
@ Quadrupole: internal structure, EOS

@ Effects are small, but

e accumulate during inspiral
@ become increasingly important in late inspiral

@ Parameter space considerably increased!

Possible Future Tasks:
@ Spin part of radiation field at 3PN (and beyond)
@ Spin Hamiltonians:
o HgP and Hg? for (neutron) stars
° HQ;LO at 4PN
@ More on tidal deformations
@ Dynamical quadrupole Lgq ~ E,,, Q"

Results & Outlook
.
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Thank you for your attention
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