Influence of internal structure on the motion

of test bodies in extreme mass ratio situations

Jan Steinhoff¹

Dirk Puetzfeld²

¹CENTRA: Multidisciplinary Center for Astrophysics, Instituto Superior Técnico (IST) ²ZARM: Center of Applied Space Technology and Microgravity, University of Bremen

13th Marcel Grossmann Meeting, 2012, Stockholm

DFG : STE 2017/1-1¹ and LA-905/8-1²

$$\frac{\delta p_a}{ds} = 0 + \frac{1}{2} R_{abcd} u^b S^{cd} + \frac{1}{6} \nabla_a R_{bcde} J^{bcde} + \dots$$
$$\frac{\delta S^{ab}}{ds} = 2p^{[a} u^{b]} - \frac{4}{3} R^{[a}{}_{cde} J^{b]cde} + \dots$$
$$\frac{\delta J^{abcd}}{ds} = ????$$

Geodesic equation:

momentum p_{μ}

- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974):
- EOM for p_a and S^{ab} follow from theory! $T^{ab}_{;b} = 0 \rightsquigarrow EOM$

Conserved Quantities:

- For a Killing vector field ξ^a : $E_{\xi} = p_a \xi^a + \frac{1}{2} S^{ab} \nabla_a \xi_b$
- Neglecting J^{abcd} etc.: mass $\underline{m} := \sqrt{-p_a p^a}$ or $\underline{m} := u^a p_a$ (SSC dep.) spin-length $S = \sqrt{\frac{1}{2} S_{ab} S^{ab}}$

$$\frac{\delta p_a}{ds} = 0 + \frac{1}{2} R_{abcd} u^b S^{cd} + \frac{1}{6} \nabla_a R_{bcde} J^{bcde} + \dots$$
$$\frac{\delta S^{ab}}{ds} = 2p^{[a} u^{b]} - \frac{4}{3} R^{[a}{}_{cde} J^{b]cde} + \dots$$
$$\frac{\delta J^{abcd}}{ds} = ????$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974):
- EOM for p_a and S^{ab} follow from theory! $T^{ab}{}_{b} = 0 \rightarrow EOM$

Conserved Quantities:

- For a Killing vector field ξ^a : $E_{\xi} = p_a \xi^a + \frac{1}{2} S^{ab} \nabla_a \xi_b$
- Neglecting J^{abcd} etc.: mass $\underline{m} := \sqrt{-p_a p^a}$ or $\underline{m} := u^a p_a$ (SSC dep.) spin-length $S = \sqrt{\frac{1}{2} S_{ab} S^{ab}}$

momentum p_{μ} spin / dipole S^{ab} quadrupole J^{abcd}, \dots $T^{ab}_{:b} = 0 \rightsquigarrow EOM$

$$\frac{\delta p_a}{ds} = 0 + \frac{1}{2} R_{abcd} u^b S^{cd} + \frac{1}{6} \nabla_a R_{bcde} J^{bcde} + \dots$$
$$\frac{\delta S^{ab}}{ds} = 2p^{[a} u^{b]} - \frac{4}{3} R^{[a}{}_{cde} J^{b]cde} + \dots$$
$$\frac{\delta J^{abcd}}{ds} = ????$$

• Geodesic equation: • Mathisson (1937), Papapetrou (1951): • Dixon (~1974): • EOM for p_a and S^{ab} follow from theory! • For a Killing vector field ξ^a : $E_{\xi} = p_a \xi^a + \frac{1}{2} S^{ab} \nabla_a \xi_b$

• Neglecting J^{abcd} etc.: mass $\underline{m} := \sqrt{-p_a p^a}$ or $\underline{m} := u^a p_a$ (SSC dep.) spin-length $S = \sqrt{\frac{1}{2} S_{ab} S^{ab}}$

$$\frac{\delta p_a}{ds} = 0 + \frac{1}{2} R_{abcd} u^b S^{cd} + \frac{1}{6} \nabla_a R_{bcde} J^{bcde} + \dots$$
$$\frac{\delta S^{ab}}{ds} = 2p^{[a} u^{b]} - \frac{4}{3} R^{[a}{}_{cde} J^{b]cde} + \dots$$
$$\frac{\delta J^{abcd}}{ds} = ????$$

- Geodesic equation:
 - Mathisson (1937), Papapetrou (1951):
 - Dixon (~1974):
 - EOM for p_a and S^{ab} follow from theory!

Conserved Quantities:

- For a Killing vector field ξ^a : $E_{\xi} = p_a \xi^a + \frac{1}{2} S^{ab} \nabla_a \xi_b$
- Neglecting J^{abcd} etc.: mass $\underline{m} := \sqrt{-p_a p^a}$ or $\underline{m} := u^a p_a$ (SSC dep.) spin-length $S = \sqrt{\frac{1}{2} S_{ab} S^{ab}}$

momentum p_{μ} spin / dipole S^{ab} quadrupole J^{abcd}, \dots $T^{ab}_{:b} = 0 \rightsquigarrow EOM$

$$\frac{\delta p_a}{ds} = 0 + \frac{1}{2} R_{abcd} u^b S^{cd} + \frac{1}{6} \nabla_a R_{bcde} J^{bcde} + \dots$$
$$\frac{\delta S^{ab}}{ds} = 2p^{[a} u^{b]} - \frac{4}{3} R^{[a}{}_{cde} J^{b]cde} + \dots$$
$$\frac{\delta J^{abcd}}{ds} = ????$$

• Geodesic equation:
• Mathisson (1937), Papapetrou (1951):
• Dixon (~1974):
• EOM for
$$p_a$$
 and S^{ab} follow from theory!
• Conserved Quantities:
• For a Killing vector field ξ^a :
 $E_{\xi} = p_a \xi^a + \frac{1}{2} S^{ab} \nabla_a \xi_b$

• Neglecting J^{abcd} etc.: mass $\underline{m} := \sqrt{-p_a p^a}$ or $\underline{m} := u^a p_a$ (SSC dep.) spin-length $S = \sqrt{\frac{1}{2} S_{ab} S^{ab}}$

We want to solve for p^a and S^{ab} (10 DOF) in terms of

$$E := E_{\partial_t}, \quad J := E_{-\partial_\theta}, \quad \underline{m}, \quad S, \quad M, \quad a, \text{ and coords.}$$

We need 10 (independent) equations:

- Definitions of {*E*, *J*, *<u>m</u>, <i>S*}
- Spin supplementary condition (SSC):
- Equatorial orbits ($\theta = \pi/2$):
- Aligned spin:

$$p_{ab} p_b = 0 \qquad \sim 4 \text{ eqs.}$$

 $p_{ab} p_b = 0 \qquad \sim 3 \text{ indep. eqs.}$
 $p_{a} = 0 \qquad \sim 1 \text{ eq.}$
 $p_{a} = 0 \qquad \sim 2 \text{ indep. eqs.}$

Solution for *p^r*:

$$(p^r)^2 = \alpha E^2 + \beta E + \gamma$$

- We must have $(p^r)^2 \ge 0$
- roots of $(p^r)^2 = 0$ important:
 - turning points
 - circular orbits

circular orbit \rightsquigarrow minimum \rightsquigarrow r

roots of
$$(p^r)^2 = 0$$
 for $J = 4M\underline{m}, S = 0, a = +0.9$

We want to solve for p^a and S^{ab} (10 DOF) in terms of

$$E := E_{\partial_t}, \quad J := E_{-\partial_\theta}, \quad \underline{m}, \quad S, \quad M, \quad a, \text{ and coords}$$

We need 10 (independent) equations:

- Definitions of {*E*, *J*, *m*, *S*}
- Spin supplementary condition (SSC):
- Equatorial orbits ($\theta = \pi/2$):
- Aligned spin:

 $\begin{array}{rl} & \sim & 4 \text{ eqs.} \\ S^{ab} p_b = 0 & \sim & 3 \text{ indep. eqs.} \\ p^{\theta} = 0 & \sim & 1 \text{ eq.} \\ S^{a\theta} = 0 & \sim & 2 \text{ indep. eqs.} \end{array}$

Solution for *p^r*:

$$(p^r)^2 = \alpha E^2 + \beta E + \gamma$$

- We must have $(p^r)^2 \ge 0$
- roots of $(p^r)^2 = 0$ important:
 - turning points
 - circular orbits

circular orbit \rightsquigarrow minimum \rightsquigarrow r

roots of
$$(p^r)^2 = 0$$
 for $J = 4M\underline{m}, S = 0, a = +0.9$

We want to solve for p^a and S^{ab} (10 DOF) in terms of

$$E := E_{\partial_t}, \quad J := E_{-\partial_\theta}, \quad \underline{m}, \quad S, \quad M, \quad a, \text{ and coords}$$

We need 10 (independent) equations:

- Definitions of {*E*, *J*, *m*, *S*}
- Spin supplementary condition (SSC):
- Equatorial orbits ($\theta = \pi/2$):
- Aligned spin:

Solution for *p*^{*r*}:

$$(p^r)^2 = \alpha E^2 + \beta E + \gamma$$

- We must have $(p^r)^2 \ge 0$
- roots of $(p^r)^2 = 0$ important:
 - turning points
 - circular orbits

circular orbit \rightsquigarrow minimum \rightsquigarrow r

 \rightarrow 4 eqs.

We want to solve for p^a and S^{ab} (10 DOF) in terms of

$$E := E_{\partial_t}, \quad J := E_{-\partial_\theta}, \quad \underline{m}, \quad S, \quad M, \quad a, \text{ and coords}$$

We need 10 (independent) equations:

- Definitions of {*E*, *J*, *m*, *S*}
- Spin supplementary condition (SSC):
- Equatorial orbits ($\theta = \pi/2$):
- Aligned spin:

Solution for *p*^{*r*}:

$$(p^r)^2 = \alpha E^2 + \beta E + \gamma$$

- We must have $(p^r)^2 \ge 0$
- roots of $(p^r)^2 = 0$ important:
 - turning points
 - circular orbits

circular orbit \rightsquigarrow minimum \rightsquigarrow r

	\sim	4 eqs.
$S^{ab}p_b=0$	\sim	3 indep. eqs.
$o^{ heta}=0$	\sim	1 eq.
$S^{a\theta} = 0$	\sim	2 indep. eas.

We want to solve for p^a and S^{ab} (10 DOF) in terms of

$$E := E_{\partial_t}, \quad J := E_{-\partial_\theta}, \quad \underline{m}, \quad S, \quad M, \quad a, \text{ and coords}$$

We need 10 (independent) equations:

- Definitions of {*E*, *J*, *m*, *S*}
- Spin supplementary condition (SSC):
- Equatorial orbits ($\theta = \pi/2$):
- Aligned spin:

Solution for *p*^{*r*}:

$$(p^r)^2 = \alpha E^2 + \beta E + \gamma$$

- We must have $(p^r)^2 \ge 0$
- roots of $(p^r)^2 = 0$ important:
 - turning points
 - circular orbits

circular orbit \rightsquigarrow minimum \rightsquigarrow r

We want to solve for p^a and S^{ab} (10 DOF) in terms of

$$E := E_{\partial_t}, \quad J := E_{-\partial_\theta}, \quad \underline{m}, \quad S, \quad M, \quad a, \text{ and coords}$$

We need 10 (independent) equations:

- Definitions of {*E*, *J*, *m*, *S*}
- Spin supplementary condition (SSC):
- Equatorial orbits ($\theta = \pi/2$):
- Aligned spin:

Solution for p^r :

$$(\boldsymbol{p}^{r})^{2} = \alpha \boldsymbol{E}^{2} + \beta \boldsymbol{E} + \gamma$$

- We must have $(p^r)^2 \ge 0$
- roots of $(p^r)^2 = 0$ important:
 - turning points
 - circular orbits

circular orbit \rightsquigarrow minimum \rightsquigarrow r

upper root of
$$(p^r)^2 = 0$$
 for $J = 4M\underline{m}, S = 0, a = 0$

 $\begin{array}{rl} & \sim & 4 \text{ eqs.} \\ S^{ab}p_b = 0 & \sim & 3 \text{ indep. eqs.} \\ p^{\theta} = 0 & \sim & 1 \text{ eq.} \\ S^{a\theta} = 0 & \sim & 2 \text{ indep. eqs.} \end{array}$

see e.g. arXiv:0804.0260, hep-th/0511133, arXiv:0911.5041

$$R_{M} = \mu u - \underbrace{\frac{1}{\mu u}}_{\text{SSC preserving}} H_{abs} S^{a} u_{c} S^{cb} - \underbrace{\frac{C_{ES^{2}}}{2\mu u}}_{\text{deformation due to spin}} E_{ab} E^{ab} - \underbrace{\frac{2\sigma_{2}}{3u^{3}}}_{\text{tidal deformations}} B_{ab} B^{ab} + \dots$$

$$E_{ab} = R_{acbd} u^{c} u^{d} \quad B_{ab} = \frac{1}{2} \epsilon_{aecd} R_{bf}^{cd} u^{e} u^{f} \quad S^{a} = \frac{1}{2} \epsilon^{abcd} u_{b} S_{cd} \quad u = \sqrt{u_{a} u^{a}}$$

$$= \{\mu, C_{ES^{2}}, \mu_{2}, \sigma_{2}\}: \text{ constants, matched to single object}$$

$$= \text{ Connection to Dixon's EOM: Bailey, Israel (1975) } J^{abcd} = 6 \frac{\partial R_{M}}{\partial R_{abcd}}$$

$$= \text{ Multipole counting scheme} \quad \forall \text{ we neglect } \mathcal{O}(\epsilon^{3}):$$

Effective potential still valid ...

... but now $\underline{m}(r) = \mu + ...$ (μ is constant by assumption) spin length *S* is constant due to a symmetry of the action

Jan Steinhoff, Dirk Puetzfeld (CENTRA, ZARM)

Influence of internal structure on the motion

see e.g. arXiv:0804.0260, hep-th/0511133, arXiv:0911.5041

$$R_{M} = \mu u - \underbrace{\frac{1}{\mu u} B_{ab} S^{a} u_{c} S^{cb}}_{\text{SSC preserving}} - \underbrace{\frac{C_{ES^{2}}}{2\mu u} E_{ab} S^{a}{}_{c} S^{cb}}_{\text{deformation due to spin}} - \underbrace{\frac{\mu_{2}}{4u^{3}} E_{ab} E^{ab}}_{\text{tidal deformations}} - \underbrace{\frac{2\sigma_{2}}{3u^{3}} B_{ab} B^{ab}}_{\text{tidal deformations}} + \dots$$

$$E_{ab} = R_{acbd} u^{c} u^{d} \quad B_{ab} = \frac{1}{2} \epsilon_{aecd} R_{bf}{}^{cd} u^{e} u^{f} \quad S^{a} = \frac{1}{2} \epsilon^{abcd} u_{b} S_{cd} \quad u = \sqrt{u_{a} u^{a}}$$

$$= \{\mu, C_{ES^{2}}, \mu_{2}, \sigma_{2}\}: \text{ constants, matched to single object}$$

$$= \text{Connection to Dixon's EOM: Bailey, Israel (1975)}$$

$$J^{abcd} = 6 \frac{\partial R_{M}}{\partial R_{abcd}}$$

• Multipole counting scheme \rightarrow we neglect $\mathcal{O}(\epsilon^3)$:

$$\mu = \mathcal{O}(\epsilon^{0}) = p^{a}, \quad \frac{\delta p^{a}}{ds} = \mathcal{O}(\epsilon^{1}) = S^{ab}, \quad \frac{\delta S^{ab}}{ds} = \mathcal{O}(\epsilon^{2}) = J^{abcd}$$

Effective potential still valid ...

... but now $\underline{m}(r) = \mu + ...$ (μ is constant by assumption) spin length *S* is constant due to a symmetry of the action

Jan Steinhoff, Dirk Puetzfeld (CENTRA, ZARM)

see e.g. arXiv:0804.0260, hep-th/0511133, arXiv:0911.5041

$$R_{M} = \mu u - \underbrace{\frac{1}{\mu u} B_{ab} S^{a} u_{c} S^{cb}}_{\text{SSC preserving}} - \underbrace{\frac{C_{ES^{2}}}{2\mu u} E_{ab} S^{a}{}_{c} S^{cb}}_{\text{deformation due to spin}} - \underbrace{\frac{\mu_{2}}{4u^{3}} E_{ab} E^{ab}}_{\text{tidal deformations}} + \dots$$

$$E_{ab} = R_{acbd} u^{c} u^{d} \quad B_{ab} = \frac{1}{2} \epsilon_{aecd} R_{bf}{}^{cd} u^{e} u^{f} \quad S^{a} = \frac{1}{2} \epsilon^{abcd} u_{b} S_{cd} \quad u = \sqrt{u_{a} u^{a}}$$

$$\{\mu, C_{ES^{2}}, \mu_{2}, \sigma_{2}\}: \text{ constants, matched to single object}$$

$$O(1975)$$

$$J^{abcd} = 6 \frac{\partial R_{M}}{\partial R_{abcd}}$$

• Multipole counting scheme \rightsquigarrow we neglect $\mathcal{O}(\epsilon^3)$:

$$\mu = \mathcal{O}(\epsilon^{0}) = p^{a}, \quad \frac{\delta p^{a}}{ds} = \mathcal{O}(\epsilon^{1}) = S^{ab}, \quad \frac{\delta S^{ab}}{ds} = \mathcal{O}(\epsilon^{2}) = J^{abcd}$$

Effective potential still valid ...

... but now $\underline{m}(r) = \mu + ...$ (μ is constant by assumption) spin length *S* is constant due to a symmetry of the action

Jan Steinhoff, Dirk Puetzfeld (CENTRA, ZARM)

see e.g. arXiv:0804.0260, hep-th/0511133, arXiv:0911.5041

$$R_{M} = \mu u - \underbrace{\frac{1}{\mu u} B_{ab} S^{a} u_{c} S^{cb}}_{\text{SSC preserving}} - \underbrace{\frac{C_{ES^{2}}}{2\mu u} E_{ab} S^{a}{}_{c} S^{cb}}_{\text{deformation due to spin}} - \underbrace{\frac{\mu_{2}}{4u^{3}} E_{ab} E^{ab}}_{\text{tidal deformations}} - \underbrace{\frac{2\sigma_{2}}{3u^{3}} B_{ab} B^{ab}}_{\text{tidal deformations}} + \dots$$

$$E_{ab} = R_{acbd} u^{c} u^{d} \quad B_{ab} = \frac{1}{2} \epsilon_{aecd} R_{bf}{}^{cd} u^{e} u^{f} \quad S^{a} = \frac{1}{2} \epsilon^{abcd} u_{b} S_{cd} \quad u = \sqrt{u_{a} u^{a}}$$

$$\{\mu, C_{ES^{2}}, \mu_{2}, \sigma_{2}\}: \text{ constants, matched to single object}$$

$$O(1975) \quad J^{abcd} = 6 \frac{\partial R_{M}}{\partial R_{abcd}}$$

• Multipole counting scheme \rightsquigarrow we neglect $\mathcal{O}(\epsilon^3)$:

$$\mu = \mathcal{O}(\epsilon^{0}) = p^{a}, \quad \frac{\delta p^{a}}{ds} = \mathcal{O}(\epsilon^{1}) = S^{ab}, \quad \frac{\delta S^{ab}}{ds} = \mathcal{O}(\epsilon^{2}) = J^{abcd}$$

Effective potential still valid ...

... but now $\underline{m}(r) = \mu + ...$ (μ is constant by assumption) spin length *S* is constant due to a symmetry of the action

Jan Steinhoff, Dirk Puetzfeld (CENTRA, ZARM)

- Spin of the central black hole: $\hat{a}_1 := \frac{a}{M}$, $|\hat{a}_1| \le 1$ • Spin of the test-body: $\hat{a}_2 := \frac{S}{\mu^2}$, $|\hat{a}_2| \le 1$ • C_{FS^2} is already dimensionless
- Tidal deformation parameters: (test-body radius R)

$$k_2 := \frac{3\mu_2}{2R^5}, \qquad j_2 := \frac{48\sigma_2}{R^5}$$

- Dimensionless radii: $\hat{R} := \frac{R}{\mu}, \quad \hat{r} := \frac{r}{M}$
- Mass ratio: $q := \frac{\mu}{M}$

	\hat{a}_2	C_{ES^2}	k_2	j ₂	Â
black hole	≤ 1	1	0	0	2
neutron star	$\lesssim 0.3$	\sim 5	~ 0.1	~ -0.02	$\sim 5 \dots 7$

• Spin of the central black hole: $\hat{a}_1 := \frac{a}{M}, \quad |\hat{a}_1| \le 1$

• Spin of the test-body:
$$\hat{a}_2 := \frac{S}{\mu^2}$$
,

- C_{ES²} is already dimensionless
- Tidal deformation parameters: (test-body radius R)

$$k_2 := \frac{3\mu_2}{2R^5}, \qquad j_2 := \frac{48\sigma_2}{R^5}$$

 $|\hat{a}_2| \le 1$

• Dimensionless radii:
$$\hat{R} := \frac{R}{\mu}$$
, $\hat{r} := \frac{r}{M}$
• Mass ratio: $a := \frac{\mu}{\mu}$

	\hat{a}_2	C_{ES^2}	k_2	j ₂	Â
black hole	≤ 1	1	0	0	2
neutron star	$\lesssim 0.3$	~ 5	~ 0.1	~ -0.02	$\sim 5 \dots 7$

• Spin of the central black hole: $\hat{a}_1 := \frac{a}{M}, |\hat{a}_1| \le 1$

• Spin of the test-body:
$$\hat{a}_2 := \frac{S}{u^2}, \qquad |\hat{a}_2| \le 1$$

- *C*_{ES²} is already dimensionless
- Tidal deformation parameters: (test-body radius R)

$$k_2 := rac{3\mu_2}{2R^5}, \qquad \dot{j}_2 := rac{48\sigma_2}{R^5}$$

- Dimensionless radii: $\hat{R} := \frac{R}{\mu}$, $\hat{r} := \frac{r}{M}$
- Mass ratio: $q := \frac{\mu}{M}$

• Spin of the central black hole: $\hat{a}_1 := \frac{a}{M}, |\hat{a}_1| \le 1$

• Spin of the test-body:
$$\hat{a}_2 := rac{S}{\mu^2}, \qquad |\hat{a}_2|$$

- C_{ES²} is already dimensionless
- Tidal deformation parameters: (test-body radius R)

$$k_2 := rac{3\mu_2}{2R^5}, \qquad \dot{j}_2 := rac{48\sigma_2}{R^5}$$

| < 1

- Dimensionless radii: $\hat{R} := \frac{R}{\mu}$, $\hat{r} := \frac{r}{M}$
- Mass ratio: $q := \frac{\mu}{M}$

	â2	C_{ES^2}	k ₂	j ₂	Â
black hole	\leq 1	1	0	0	2
neutron star	\lesssim 0.3	~ 5	~ 0.1	~ -0.02	$\sim 5 \dots 7$

- Binding energy: $e(\hat{r}, J) = E/\mu - 1$
- Circular orbits $\rightsquigarrow \hat{r} \rightsquigarrow e(J)$
- Orbital angular momentum: $l_c = \frac{1}{M_u}(J-S) \rightsquigarrow e(l_c)$

- Binding energy: $e(\hat{r}, J) = E/\mu - 1$
- Circular orbits $\rightsquigarrow \hat{r} \rightsquigarrow e(J)$
- Orbital angular momentum: $l_c = \frac{1}{M_u}(J-S) \rightsquigarrow e(l_c)$

- self-force linear test-spin quadratic test-spin 1000 C_{rc2} -quadrupole 10^{-2} 10^{-3} 10^{-4} $|\Delta e/e_0|$ 10^{-5} 10^{-6} 10^{-7} 10^{-8} 10^{-9} 5.5 3.5 4.04.55.06.0 l_c spin effects for $\hat{a}_2 = 1$, $C_{ES^2} = 1$ • Taylor-expansion: $e(I_c) = e_0(I_c) + \epsilon e_1(I_c) + \epsilon^2 e_2(I_c) + \dots$ $e_1 \propto q \hat{a}_2, \qquad e_2^{S^2} \propto -q^2 \hat{a}_2^2, \qquad e_2^{C_{ES^2}} \propto -C_{ES^2} q^2 \hat{a}_2^2$
- Binding energy: $e(\hat{r}, J) = E/\mu - 1$
- Circular orbits $\rightsquigarrow \hat{r} \rightsquigarrow e(J)$
- Orbital angular momentum: $l_c = \frac{1}{M_u}(J-S) \rightsquigarrow e(l_c)$

Scaling:

Results for Kerr background

tidal effects for neutron stars and mass ratio $q = \frac{1}{50}$ $(k_2 = 0.1, j_2 = -0.01, \hat{R} = 5)$ 10^{-5} 10^{-} 10^{-6} 10^{-8} $\hat{a}_1 = -1$ $\hat{a}_1 = -1$ 10^{-9} 10^{-7} $-\hat{a}_1=0$ $\hat{a}_1=0$ 10^{-10} 10^{-8} $\hat{a}_1 = 0.7$ $\hat{a}_1 = 0.7$ 10^{-11} $|\Delta e/e_0|$ $\Delta e/e_0$ 10^{-9} $-\hat{a}_1=1$ $-\hat{a}_{1}=1$ 10^{-12} 10^{-10} 10^{-13} 10^{-11} 10^{-14} 10^{-12} 10^{-15} 10^{-13} 10^{-16} 2 3 2 3 5 Л 5 Λ 1c l_c gravito-electric tidal effects gravito-magnetic tidal effects $e_2^{k_2} \propto -k_2 q^4 \hat{R}^5$ $e_2^{j_2}\propto j_2 q^4 \hat{R}^5$ Scaling: • For $\hat{a}_1 = 1$ circular orbits are possible at the horizon! • Limit due to tidal disruption:

Results for Kerr background

tidal effects for neutron stars and mass ratio $q = \frac{1}{50}$ $(k_2 = 0.1, j_2 = -0.01, \hat{R} = 5)$ 10^{-} 10^{-} 10^{-6} 10^{-8} $\hat{a}_1 = -1$ $\hat{a}_1 = -1$ 10^{-9} 10^{-7} $\hat{a}_1 = 0$ $\hat{a}_1=0$ 10^{-10} 10^{-8} $\hat{a}_1 = 0.7$ $\hat{a}_1 = 0.7$ 10^{-11} $|\Delta e/e_0|$ $\Delta e/e_0$ 10^{-9} $-\hat{a}_1=1$ $\hat{a}_{1}=1$ 10^{-12} 10^{-10} 10^{-13} 10^{-11} 10^{-14} 10^{-12} 10^{-15} 10^{-13} 10^{-16} 2 3 2 3 5 5 Λ Λ 1c l_c gravito-electric tidal effects gravito-magnetic tidal effects $e_2^{k_2} \propto -k_2 q^4 \hat{R}^5$ $e_2^{j_2}\propto j_2 q^4 \hat{R}^5$ Scaling: • For $\hat{a}_1 = 1$ circular orbits are possible at the horizon! • Limit due to tidal disruption:

Results for Kerr background

tidal effects for neutron stars and mass ratio $q = \frac{1}{50}$ $(k_2 = 0.1, j_2 = -0.01, \hat{R} = 5)$ 10^{-} 10 10^{-6} 10^{-8} $\hat{a}_1 = -1$ $\hat{a}_1 = -1$ 10^{-9} 10^{-7} $\hat{a}_1=0$ $\hat{a}_1=0$ 10^{-10} 10^{-8} $\hat{a}_1 = 0.7$ $\hat{a}_1 = 0.7$ 10^{-11} $|\Delta e/e_0|$ $\Delta e/e_0$ 10^{-9} $-\hat{a}_1=1$ $-\hat{a}_1=1$ 10^{-12} 10^{-10} 10^{-13} 10^{-11} 10^{-14} 10^{-12} 10^{-15} 10^{-13} 10^{-16} 2 3 2 3 5 Λ Λ 1c l_c gravito-electric tidal effects gravito-magnetic tidal effects Scaling: $e_2^{k_2} \propto -k_2 q^4 \hat{R}^5$ $e_2^{j_2}\propto j_2 q^4 \hat{R}^5$ • For $\hat{a}_1 = 1$ circular orbits are possible at the horizon! $rac{e_2^{k_2}}{e_2}\lesssim rac{k_2}{4\hat{R}}\sim 10^{-2}$ Limit due to tidal disruption:

- Established connection between PN models and Dixon
- We identified relevance of some contributions due to the internal structure
- Spin-induced quadrupole effects scale like second-order self-force ($\sim q^2$)
- Gauge invariant $e(I_c)$: comparison with PN possible, also matching (EFT)
- Extension to comparable masses?
- Hamiltonian for generic orbits and spin orientations?

Thank you for your attention

and for support by CENTRA/IST and the German Research Foundation **DFG**