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Frame-Dependence of Center and Spin in SR

fast & heavy
@ Spinning object moving with velocity v.
Shall have constant density in rest frame.
Upper hemisphere faster than lower.

°
°
@ Upper hemisphere more massive than lower.
@ Center of mass displaced by Ax.

°

slow & light Spin depends on location of center.

@ Description by means of a 4-tensor S#V:
o Spin is S¥ = €lkS,.
e Mass dipole related to S%.

@ Spin supplementary condition (SSC) fixates S% in terms of
S¥.
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SSCin SR

Usefull SSCs are, with mass m and 4-momentum p,,:
o Mgller SSC: 5% =0
o Fokker-Synge-Pryce (covariant) SSC: $#p, =0
o Newton-Wigner (canonical) SSC: mS% — S#vp,, =0

Canonical structure depends on SSC, and can be complicated.

@ In covariant SSC, with position z:

. . Si ig0j _ ,ig0i
(2(1), A(t)) = 25 — P2 P27

m2 m2p°
@ In Newton-Wigner SSC:
{2'(0), pi(0)} = 0. {5i(t). 5()} = € Su(t)

{82,...} =0 = §%=const.
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Spin in GR

@ We restrict to linear order in spin here:

o No deformation by spin included.
o Linear order is universal.

@ Stress-Energy Tensor in covariant SSC:

vV —8 T = /dT [mu“u”6(4) - (Sa(“u”)5(4));a}
= pv¥s — (S2U6) o — ST P
Sy =0(x—2), d=65(x—2)
e EOM follow from T, = 0:

DS Dp,
dr 7 dr

1
= ESA”u“’RWV,\

@ Actions are known for covariant SSC in external grav. fields.
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Some Literature on Spin in Relativity

[§ G. N. Fleming
Covariant Position Operators, Spin, and Locality
Phys. Rev. 137, B 188 (1965)

[§ A. J. Hanson and T. Regge
The Relativistic Spherical Top
Ann. Phys. (N.Y.) 87, 498 (1974)

[ A. Trautman
Lectures on General Relativity
Gen. Rel. Grav. 34, 721 (2002)

[4 J. Natério
Tangent Euler Top in General Relativity
arXiv:gr-qc/0703081v1
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Preliminaries

@ 3+ 1 decomposition:

(NN N2 N 2w [ -1 N
ng_< Nj ,yy,)v N°g _< j N27ij_NiNJ'>

Kj =—NI'%, n,=(-N,0,0,0)

1y

@ Canonical Variables:
{7ij(x, t), wkl(x’, t)} = 16%55'5(x - X))
@ In the following, we will always restrict to:

= — A"V = AT Ki
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Hamiltonian before Gauge Fixing

H= / Bx(NH — N'H;) + Ely]
H = /Hﬁeld + eratter
Hi — H?eld 4 /Hllgnatter

1
167,/7

H?eld _

Hﬁeld — _

1 .\ 2 L
[’YR +5 (v5m7)" -~ ’Yij')’klﬂ"kﬂﬂ}

1 ik
%7’17“] ik

o Lapse N and shift N’ are Lagrange multipliers.
e Surface term E[v;;] reflects boundary conditions.

@ 3-dim. geometry of t = const. surfaces important.
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Field Equations before Gauge Fixing

H= / Bx(NH — N'H;) + Ely]

@ 12 evolution equations:
1 9x%  GH 1 9y OH
16 ot &y 16 ot  onl

@ Four constraint equations:

H 5H
on = =0 o

EH;ZO

o Compare with 3 4 1 version of the Einstein equations:

meatter — WTMVnMnV , fH}natter — —\ﬁTiynu

Matter parts can be calculated using the stress-energy tensor,
cf. Boulware and Deser (1967).
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The ADMTT Gauge

@ ADMTT gauge is defined by:
0= 3vijy — Vi

0= i
@ Equivalent to a decomposition:
1A TT
vy = <1+8¢) 8+ h]
i il
=7+

@ Also fixates Lapse and Shift:
(37iij —vii)o =0 = 3AN; + Njji=...
7_(_1'1'70:0 = AN =




Introduction
00000®000

The Reduced Hamiltonian

o Constraints together with gauge conditions allow reduction of
phase space.

@ Reduction in ADMTT gauge:

1 4
vy = <1+8¢>) 5+ T

ol =al + 7

e Constraints are solved for ¢ and #¥.
@ Remaining canonical field variables:
{RTT (x, £), wr (<, £)} = 16767 ™¥5(x — x')
@ Surface expression E turns into reduced Hamiltonian Hapm.
@ For general gauges, Dirac-brackets must be used.
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Global Poincaré Invariance |

Global Poincaré group is a consequence of asymptotic flatness.

Generators P* and J*¥ are conserved.

Poincaré algebra:
{P*,P"} =0
{PH, JP7} = —plP P74 e pP
{JHY PPIY = PP B P VT TR PV i PR

3 4+ 1 decomposition:

Energy: E = P°

Momentum: P’

Angular momentum: J' = ik
Boost: JO =K/ =G —tP!
Center of mass: X' = G'/E
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Global Poincaré Invariance |l

e E, P, Ji, and G are given as surface integrals at spatial
infinity.
@ Poincaré algebra can be checked after reduction.
e E and G’ in ADMTT gauge:
E=———[d*A
1671'/ xA¢
i 3 i
= A
¢ 167T/d XX A

P; and Jij in ADMTT gauge (2PN):
P; = /d3XfHI.natter

3 i atte j atte
J,-J-:/d X (xHEEE — )




Introduction
00000000e

Some Literature on the ADM Formalism

¥ R. Arnowitt, S. Deser, and C. W. Misner
The Dynamics of General Relativity
in Gravitation: An Introduction to Current Research, edited by
L. Witten (Wiley, New York, 1962); arXiv:gr-qc/0405109

¥ A Hanson, T. Regge, and C. Teitelboim
Constrained Hamiltonian Systems
Academia Nazionale dei Lincei, Roma, 1976

[3 P. Jaranowski and G. Schafer
Third post-Newtonian higher order ADM Hamiltonian
dynamics for two-body point-mass systems
Phys. Rev. D 57, 7274 (1998)
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Conditions on the Matter Hamiltonian

Hmatter _ /d3X(Neratter _ Nimeatter)

o HMatter gpd HWmatter myst be independent of N and N'.

o Constraints coincide with the Einstein equations iff:
/Hmatter — ﬁTuununV , r}_[?latter — 7\/57-;/,7”

@ Evolution equations coincide with the Einstein equations iff:

5Hmatter 5Hmatter 1
ol ’ et 2 VI Ty
o Hmatter gnd ’H,matter must be independent of N,N' and 7¥.

@ Construct them as 3-dim. covariant generalisations of their
Minkowski versions.
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Our Strategy

@ Calculate matter parts using stress-energy tensor in Minkowski
space in covariant SSC:

%matter — \FyTuuanV ’ r}_[}natter — —\ﬁTiynu

Go over to Newton-Wigner SSC.
Take 3-dim. covariant generalisations of H{™atter and F{matter,
Redefine momentum, such that P; = [ d3x H{ patter,

Redefine spin, such that S = const.

Questions that must be answered:

o Is the calculation with the 4-dim. covariant stress-energy
tensor possible?
o Is SH — 1N /4Ty fulfilled?
57 2 N7y Ly Tulnilea:
e Is the Poincaré algebra fulfilled?
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Minkowski Space Versions

@ Stress-Energy tensor in covariant SSC:

TH = ptv¥§ — (§2Wy1)g)

e Use Newton-Wigner variables, np = n,p* = —/m? + ~ip;p;:
S n,

m — np
SHY = S p“n,\g”’\/m — p”n;ﬁ“’\/m

ZH — A

@ Result:

\/’7:’\_“””“”1/ = —np(s — |:5U5k/mflnpgjk(5]

N

_\fﬁ'i”nl, = pid + % {5mk§ik5}

,m

{(5mk51p + 5mp51k)6qlsqp np(m — np) (5] .
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Redefinition of Momentum

@ 3-dim. covariant generalisation:

qmatter _ —npd — [,),U,yk/ pi gjk5:|
m— np i
matter _ s E mkg, 5
H; = pjo + 5 [V oko]
mk cp mp sky . ql & PiPk
_ §F P§VyA'S, — T E S
oo et P

o Redefine momentum, such that P; = [ d3x Hmatter:
HPAE = Pis + .. Am

17 PmP : ¢
Pi=pi—> [v”v"pw,p - )v’”’vk'v‘”’%p,i] Sik

np(m — np
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Redefinition of Spin

@ In Minkowski space, we have:

A,

S;iSjj = const.

Covariant generalisation:

Wik’yjlgygk/ = const.

Need symmetric root of ~;; (dreibein), cf. Kibble (1963):
€il€lj = Yij, €ij = €ji

o Constant-euclidean-length spin Sjy(j) = €k Sk):

Skl = ekie/jS(,-)(j), S(i)(f)s(i)(f) = const.
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The Final Result for our Formalism

matter 1 ki Py kI S
Hmatte :—nP5—2tU*yJ7k—{ P7 UyHs,; 5}

,I

,H];natter — P,'6 + % ['ymkg,'k(ﬂ m

PPy

. mk sp mp sky. gl &
[nP(m— nP)(,y 51 +7 51 )’7 qu(5:|

,m

. P;P;
VITj=——Z6+tf,+0(G)

nP

S1iP; Sp(iPyyPaP
O Tl (GF)) ki mn_2m(@i"j)"nti
th = — 74 -
§ =7 T 0T (nP)2(m — nP)
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Correct evolution equations?

Hmatter — /d3x(Neratter _ Niernatter)

@ Inspection of our matter expressions:

1. . p .
qymatter _ _ hpg Etg_,y’f’k — _7/nP’YU’7k/5jk5

m i

R P;P;
Vity=—-"6+ 1, +0(G)

@ We have at least:

5 Hmatter 1

= 3T +0(6)

o Sufficient for 2PN = NLO!
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Global Poincaré Invariance: Preliminary Results

1 ~
matter _ p. - mk ¢,
HPH = Pis + [w s,ka}

[ PPy
nP(m — nP)

@ By construction, we have: P; = [ d3x #{matter

(y™kSP + 4P 5,*)7"’3:7;)5]

,m

o We also have:
Jij _ /d3x (XifHJr_natter _ Xij}natter) _ 2in _ 2j'Di + S(I)U)

@ Implies that a major part of the Poincaré algebra is fulfilled!

@ Justifies the use of standard Poisson-brackets for matter in the
ADMTT gauge:

{2'(1), Pi(t)} = 85, {S(i)(1), S5y (1)} = eieSuo (t)
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Result with 4-dim. Covariant Stress-Energy Tensor

@ Generalisation of Newton-Wigner SSC:
SH*n,
m— np
SHY = S p“n,\g”’\/m — p”n)\g“’\/m

oxt = —

o We need an additional term in P;: P; = p; — n,S*" Ky + ...
o We add a Lie-shift:

VAT nuny + Lmsxe [V TH npny] = Jmatter
— ﬁTiynu + Cmtix“ [_ﬁTiynV] =
HPAMr 5y (Prj+ P — P ;)6

@ P; must be parallel shifted along 6x/ without rotation.

@ Agreement with our previous result!
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Action Principle

= / dt(Z Padi+ 3 sPaw + 16% / P el BTT
a a

- HADM |:Z Pan ng)a h;_I/—T7 7T!|J'T:| >

o Formulas: Q(ai) —% Uk/\a(l)(_j) a(l)(k)
NatiyoNaGiy k) = Na(y Ny = i
@ Variables to vary: P,;, 2!, S‘S'), Na(i()-

@ Equations of motion for matter:

. 5fdt/HADM : 5fdt/HADM
> = Pa,' B —
%) =~%p o Pl 625(t)

8 dt'Hapm

Q0(t) = 50(t) = P ()S1(1)

5S¢t
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@ Gauge independent formalism?
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The Constraint Algebra |

{H(x), H(X)

}
{Hi(x), H(X)}
{Hi(), 1(x)}

[ JG0VI(x) + Hi( )T ()] B

( ) xx/ i
( )5xx’,i _Hi(xl) 5xx’,j

@ This algebra is valid for point-masses.
@ The coupling to gravity must be simple:

o H™ater does not depend on derivatives of 7;;.
o HMaMer does not depend on ; at all.

@ Spinning objects do not couple that simple.

@ An algebra of (first-class) constraints is related to gauge
symmetries.

@ Algebra quite robust even if matter is coupled to gravity.

@ Extension of this algebra is possible, if gauge structure is
extended.




Our Formulation
oceeo

The Constraint Algebra [l

o Consistent first-class constraint algebra necessary for gauge
independent formulation.
@ Mixed matter-field contribution for simple coupling:

{00, ™ ()} = VA TH(X) [ (X)) S + 7 i (X) S
@ Matter-only algebra for simple coupling:
{H™(x), H™(x)} = = [H" 0 (x) + 1" ()" (x)] 0w
[HE 00 ()} = =H 0 B = AT ) [817 (') b+ 77 () B
{H" (), 7" (X)) = =Hj" (%) i = H (X)) Gux

@ Minkowski-limit of this algebra can be considered ...
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Algebra of Spinning Objects Stress-Energy-Tensor

Components in Minkowski Space

{H" (), H™ ()} = = [Hi" () + " ()] xxr i
{H?(X)aHm(X/)} = 7Hm(x) 5xx/,i - Tij(Xl) 5xx/,j
{H" (), 1" (X)) = =M (%) xw i — H(X") Oxxr j + 00 [Pinjq (x) 0xx']
2 S1aPi)(Pa) P Si(aPi)(iPn)
hin' x)=|-35 nPi j 5k/ Pk Jira +5kl 1)
() DTG (np)(m —np) " (np)(m — np)
_ 5. PP
Pi =0~ (apyp

@ This is a part of the Stress-Energy-Tensor algebra,
H™(x) = T and HI(x) = TY.

@ Occurance of hjpjq(x) shows already in the Minkowsky case
that coupling to gravity can not be simple.

o Dirac field also has hjjq(x) # 0.
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Perturbative Solution of Partial Differential Equations

Example:

o Af(x) = a(x) + b(x)f(x) + c(x)[f(x)]2 +
@ In general: vectors, other diff. op., derivatives on RHS, ...
@ Perturbative expansion, e.g. a = a(;;) +3;2) + 3@y + .- -

@ Leads to recursive equations:
Af(r)(x) = ag)(x)
Afo)(x) = ag2)(x) + b1y (x)f(1)(x)
Afi3)(x) = agz)(x) + ba)(x)f(2)(x) + b2)(x)f(1)(x)
+ ey () [y (X))

@ Delta sources = Regularisation
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Calculation of Hamiltonians

Going over to ADMTT gauge:

1 4
=5V 4 771'{--,-

2

Expansion of the constraints in ¢~

Solve constraints for ¢ and 7.

Calculate Hamiltonian:

Hapmlx), Pais Sagiy, hj > 7 ]———/df‘quﬁ

Near-zone expansion of wave equation Dh;}—T =...

U T ki
Elimination of h; " and 77+
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The Leading-Order (LO) in Spin

o LO Spin-Orbit Hamiltonian:

@ LO Spin;-Spiny Hamiltonian:

Hss —222 s [3(Sa - nap)(Sp - nap) — (Sa - Sb)]

a b+#a

@ Center of mass vector:

1
Gsg =>" H(Pa x Sa), GsQ =0

a
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NLO Spin-Orbit Hamiltonian (DJS 2007)

HNLO _ _((P1 X 51) . l‘l12) 5m2P§ 3(P1 : P2) - 3P%
0 Sm% 4m% 4m1m2

. 3(P1 - n12)(P2 - np2) n 3(P2 - 012)21

4m% 2m1m2

n ((P2 x S1) - n12) [(P1 -P2) n 3(P1 - ny2)(P2 - "12)}

I‘122 mimo mimy
4 ((Pl X 51) . Pz) 2(P2 . l‘l12) _ 3(P1 . l‘l12)
r122 mimo 4m%
_ ((Pl X 51) . n12) 11m2 4 5m§
rf’2 2 mp

P : 1
4 (P le) ni2) [6m1+ 52'"2] +(12)
ab
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NLO Spiny-Spin, Hamiltonian |

HMO — L (3((Py x S;) - nio) (P2 x S2) - o)

+

D
—~
—

P> x S1) - n12)((P1 x S2) - n12)

S1-n12)(S2 - n12)(P1 - n12)(P2 - n12)

—3(S1-n12)(S2 - n12)(P1 - P2)

+3(S1 - P2)(S2 - n12)(P1 - n12)
)(S1 - n12)(P2 - n12)
)(S2 - n12)(P2 - n12)

+3(S2 - P2)(S1 - n12)(P1 - n12)
) (P2 -n12) + (S1-P1)(S2 - P2)

S1-P2)(S2P1) + (S1-S2)(P1 - P2))

|
—
1
—~
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NLO Spiny-Spin, Hamiltonian |l

+ 2m2 5 [—((P1 % S1) - n12)((P1 x S2) - n12)
1>
+(S1-S2)(P1 - n12)? — (S1- n12)(S2 - P1)(P1 - n12)]
sz (P2 82)-mi2) (P $1) )
+(S1-S2)(P2 - n12)?® — (S2 - n12)(S1 - P2)(P2 - n12)]
6(m1 + m2)

) [(S1-S2) — 2(S1 - n12)(S2 - n12)]
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NLO Center of Mass

NLO _ P2
Gso = &m 3(P X S,)
5xa + Xp
+ ;; 4m,rap [ ((P, xS,) - nab)T —5(P, x Sa)}

+ ZZ { (PbxS;) — %("ab % S5)(Pp - nap)

a b;éaa

Xz + Xp

- ((Pa X Sa) . nab)

NLO ZZ{B 2 Nap)(Sh - "ab)_(sa'sb)]:;‘i‘(sb'nab)rs;}

a b#a ab a

o
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Global Poincaré Invariance

@ Check of Poincaré algebra is important:

o Generally a good indicator for errors.
e Validates Poisson-brackets for our variables.

@ Generators of the Poincaré group:
P=) P,
a
J=) x,x PQ+ZSa
a

G = Gpy + G58 + GL9 + GYS© + GMLO
Haom = Hewm + HSS + HES + HEG® + Hag®

@ Point-mass (PM) contributions must be included.

@ Poincaré algebra is fulfilled!
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NLO Spin Hamiltonians in the Literature

[ T. Damour, P. Jaranowski, and G. Schafer
Hamiltonian of two spinning compact bodies with
next-to-leading order gravitational spin-orbit coupling
Phys. Rev. D submitted, arXiv:0711.1048v1 [gr-qc]

[§ S. Hergt and G. Schafer
Source terms for Kerr geometry in approximate ADM
coordinates and higher-order-in-spin interaction Hamiltonians
for binary black holes
Phys. Rev. D submitted, arXiv:0712.1515v1 [gr-qc]

[@ J. Steinhoff, S. Hergt, and G. Schafer
On the next-to-leading order gravitational spin(1)-spin(2)
dynamics
Phys. Rev. D (R) submitted, arXiv:0712.1716v1 [gr-qc]
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SO Hamiltonian of Damour, Jaranowski, and Schafer
arXiv:0711.1048v1 [gr-qc], submitted to Phys. Rev. D

Hamiltonian is linear in a constant-euclidean-length S,:

Hé\l(l)_o(xav Pa, Sa) = Z Qa(xaa pa) - S,
a=1,2

EOM from Hamiltonian: Sa =0, xS,
. ) DSH
EOM in covariant SSC:

-
Compare both EOM using S2 = const. (not unique).

=0

Resulting formula for 2, depends on metric at x,.
Metric of point-masses suffices for €2,!

Identical to our result.
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Spiny-Spin, Hamiltonian via modified DJS Method

Ansatz for the Hamiltonian:

Hé\ISLO(Xaa Pa, sa) = Qlj(xa’ pa) S{l') 59)
= Q]_(Xa, Pa, 52) . sl

DJS formula can be used for Q] = §~2,-j5£j).

Now S,-dependent part of the metric is needed.
Metric is calculated with our source.

Again identical to our result.

Lapse and shift were used.

EOM were used.
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Spiny-Spin, Potential of Porto and Rothstein

e First (incomplete) result:

[ R. A. Porto and |. Z. Rothstein
Calculation of the First Nonlinear Contribution to the
General-Relativistic Spin-Spin Interaction for Binary
Systems
Phys. Rev. Lett. 97, 021101 (2006)

@ Prompt confirmation of our spini-spin, Hamiltonian in
arXiv:0712.1716v1:

[d R. A. Porto and I. Z. Rothstein
Comment on ‘On the next-to-leading order gravitational
spin(1)-spin(2) dynamics’ by J. Steinhoff et al
arXiv:0712.2032v1 [gr-qc]
@ Their new, complete potential relates to our Hamiltonian via
Legendre and canonical transformation.
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Summary

@ Our formalism describes the correct NLO spin dynamics.

@ Application is formally possible up to any desired order.

@ Outlook
e Further application of our formalism.
o Gauge independent formulation?
e Up to which order is our formalism correct?
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